Cargando…

Deferoxamine-Soaked Suture Improves Angiogenesis and Repair Potential After Acute Injury of the Chicken Achilles Tendon

BACKGROUND: A major obstacle to the treatment of soft tissue injuries is the hypovascular nature of the tissues. Deferoxamine (DFO) has been shown to stimulate angiogenesis by limiting the degradation of intracellular hypoxia-inducible factor 1–alpha. HYPOTHESIS: DFO-saturated suture would induce an...

Descripción completa

Detalles Bibliográficos
Autores principales: Efird, William M., Fletcher, Alex G., Draeger, Reid W., Spang, Jeffrey T., Dahners, Laurence E., Weinhold, Paul S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201186/
https://www.ncbi.nlm.nih.gov/pubmed/30370309
http://dx.doi.org/10.1177/2325967118802792
Descripción
Sumario:BACKGROUND: A major obstacle to the treatment of soft tissue injuries is the hypovascular nature of the tissues. Deferoxamine (DFO) has been shown to stimulate angiogenesis by limiting the degradation of intracellular hypoxia-inducible factor 1–alpha. HYPOTHESIS: DFO-saturated suture would induce angiogenesis and improve the markers of early healing in an Achilles tendon repair model. STUDY DESIGN: Controlled laboratory study. METHODS: Broiler hens were randomly assigned to the control (CTL) group or DFO group (n = 9 per group). The right Achilles tendon was partially transected at its middle third. The defect was surgically repaired using 3-0 Vicryl suture soaked in either sterile water (CTL group) or 324 mM DFO solution (DFO group). All animals were euthanized 2 weeks after the injury, and the tendon was harvested. Half of the tendon was used to evaluate angiogenesis via hemoglobin content and tissue repair via DNA content and proteoglycan (PG) content. The other half of the tendon was sectioned and stained with hematoxylin and eosin, safranin O, and lectin to evaluate vessel density. RESULTS: Hemoglobin content (percentage of wet tissue weight) was significantly increased in the DFO group compared with the CTL group (0.081 ± 0.012 vs 0.063 ± 0.016, respectively; P = .046). DNA content (percentage of wet tissue weight) was also significantly increased in the DFO group compared with the CTL group (0.31 ± 0.05 vs 0.23 ± 0.03, respectively; P = .024). PG content (percentage of wet tissue weight) was significantly decreased in the DFO group compared with the CTL group (0.26 ± 0.02 vs 0.33 ± 0.08, respectively; P = .035). Total chondroid area (number of vessels per mm(2) of tissue area evaluated) was significantly decreased in the DFO group compared with the CTL group (17.2 ± 6.6 vs 24.6 ± 5.1, respectively; P = .038). Articular zone vessel density (vessels/mm(2)) was significantly increased in the DFO group compared with the CTL group (7.1 ± 2.5 vs 2.1 ± 0.9, respectively; P = .026). CONCLUSION: The significant increase in hemoglobin content as well as articular zone vessel density in the DFO group compared with the CTL group is evidence of increased angiogenesis in the fibrocartilaginous region of the tendon exposed to DFO. The DFO group also displayed a significantly greater level of DNA and significantly lower level of PG, suggesting enhanced early healing by fibrous tissue formation. CLINICAL RELEVANCE: Stimulating angiogenesis by DFO-saturated suture may be clinically useful to improve healing of poorly vascularized tissues.