Cargando…
Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells
Eccentric exercise is a well-studied modality that induces oxidative stress and muscle damage. Furthermore, it promotes inflammatory response in which peripheral blood mononuclear cells (PBMCs) are the major mediators. Although free radicals are necessary in a specific range of concentrations, yet u...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201335/ https://www.ncbi.nlm.nih.gov/pubmed/30405875 http://dx.doi.org/10.1155/2018/3053704 |
_version_ | 1783365475918413824 |
---|---|
author | Spanidis, Ypatios Veskoukis, Aristidis S. Papanikolaou, Christina Stagos, Dimitrios Priftis, Alexandros Deli, Chariklia K. Jamurtas, Athanasios Z. Kouretas, Demetrios |
author_facet | Spanidis, Ypatios Veskoukis, Aristidis S. Papanikolaou, Christina Stagos, Dimitrios Priftis, Alexandros Deli, Chariklia K. Jamurtas, Athanasios Z. Kouretas, Demetrios |
author_sort | Spanidis, Ypatios |
collection | PubMed |
description | Eccentric exercise is a well-studied modality that induces oxidative stress and muscle damage. Furthermore, it promotes inflammatory response in which peripheral blood mononuclear cells (PBMCs) are the major mediators. Although free radicals are necessary in a specific range of concentrations, yet unknown, it remains unclear whether reductive redox status (i.e., increased antioxidant defenses and impaired free radical generation) is beneficial or not. Thus, the aim of the present investigation was to examine the effects of reductive stress and the impact of reduced glutathione (GSH) baseline values on the ability of PBMCs to counteract oxidative stress induced by a potent oxidative agent. PBMCs were isolated from the blood of subjects who performed eccentric exercise and treated with t-BOOH for 24 h. The subjects were clustered in the reductive and the oxidative group on the basis of increased or decreased GSH concentration postexercise compared to preexercise values, respectively. According to our results in PBMCs, lipid peroxidation levels as depicted by thiobarbituric acid reactive substances (TBARS) remained unchanged in the reductive group contrary to the observed enhancement in the oxidative group. In addition, GSH concentration and catalase activity increased in the reductive group, whereas they were not affected in the oxidative group. In conclusion, the effects of an oxidizing agent on the redox status of PBMCs isolated from the blood of athletes after acute eccentric exercise are dependent on the baseline values of GSH in erythrocytes. Otherwise, reductive stress defined by increased GSH levels is a protective mechanism, at least when followed by an oxidative stimulus. |
format | Online Article Text |
id | pubmed-6201335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-62013352018-11-07 Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells Spanidis, Ypatios Veskoukis, Aristidis S. Papanikolaou, Christina Stagos, Dimitrios Priftis, Alexandros Deli, Chariklia K. Jamurtas, Athanasios Z. Kouretas, Demetrios Oxid Med Cell Longev Research Article Eccentric exercise is a well-studied modality that induces oxidative stress and muscle damage. Furthermore, it promotes inflammatory response in which peripheral blood mononuclear cells (PBMCs) are the major mediators. Although free radicals are necessary in a specific range of concentrations, yet unknown, it remains unclear whether reductive redox status (i.e., increased antioxidant defenses and impaired free radical generation) is beneficial or not. Thus, the aim of the present investigation was to examine the effects of reductive stress and the impact of reduced glutathione (GSH) baseline values on the ability of PBMCs to counteract oxidative stress induced by a potent oxidative agent. PBMCs were isolated from the blood of subjects who performed eccentric exercise and treated with t-BOOH for 24 h. The subjects were clustered in the reductive and the oxidative group on the basis of increased or decreased GSH concentration postexercise compared to preexercise values, respectively. According to our results in PBMCs, lipid peroxidation levels as depicted by thiobarbituric acid reactive substances (TBARS) remained unchanged in the reductive group contrary to the observed enhancement in the oxidative group. In addition, GSH concentration and catalase activity increased in the reductive group, whereas they were not affected in the oxidative group. In conclusion, the effects of an oxidizing agent on the redox status of PBMCs isolated from the blood of athletes after acute eccentric exercise are dependent on the baseline values of GSH in erythrocytes. Otherwise, reductive stress defined by increased GSH levels is a protective mechanism, at least when followed by an oxidative stimulus. Hindawi 2018-10-11 /pmc/articles/PMC6201335/ /pubmed/30405875 http://dx.doi.org/10.1155/2018/3053704 Text en Copyright © 2018 Ypatios Spanidis et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Spanidis, Ypatios Veskoukis, Aristidis S. Papanikolaou, Christina Stagos, Dimitrios Priftis, Alexandros Deli, Chariklia K. Jamurtas, Athanasios Z. Kouretas, Demetrios Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title | Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title_full | Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title_fullStr | Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title_full_unstemmed | Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title_short | Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells |
title_sort | exercise-induced reductive stress is a protective mechanism against oxidative stress in peripheral blood mononuclear cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201335/ https://www.ncbi.nlm.nih.gov/pubmed/30405875 http://dx.doi.org/10.1155/2018/3053704 |
work_keys_str_mv | AT spanidisypatios exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT veskoukisaristidiss exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT papanikolaouchristina exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT stagosdimitrios exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT priftisalexandros exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT delicharikliak exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT jamurtasathanasiosz exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells AT kouretasdemetrios exerciseinducedreductivestressisaprotectivemechanismagainstoxidativestressinperipheralbloodmononuclearcells |