Cargando…
Reversal of Aging‐Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein‐Protein Interfaces
BACKGROUND: The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening. METHODS AND RESULT...
Autores principales: | Nicholson, Christopher J., Singh, Kuldeep, Saphirstein, Robert J., Gao, Yuan Z., Li, Qian, Chiu, Joanna G., Leavis, Paul, Verwoert, Germaine C., Mitchell, G. F., Porter, Tyrone, Morgan, Kathleen G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201469/ https://www.ncbi.nlm.nih.gov/pubmed/30021807 http://dx.doi.org/10.1161/JAHA.118.008926 |
Ejemplares similares
-
The Focal Adhesion: A Regulated Component of Aortic Stiffness
por: Saphirstein, Robert J., et al.
Publicado: (2013) -
Vascular aging, the vascular cytoskeleton and aortic stiffness
por: Kajuluri, Lova Prasadareddy, et al.
Publicado: (2021) -
Non‐muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non‐muscle cortical cytoskeleton
por: Singh, Kuldeep, et al.
Publicado: (2021) -
MicroRNA‐203 mimics age‐related aortic smooth muscle dysfunction of cytoskeletal pathways
por: Nicholson, Christopher J., et al.
Publicado: (2016) -
The pro-apoptotic protein Par-4 facilitates vascular contractility by cytoskeletal targeting of ZIPK
por: Vetterkind, Susanne, et al.
Publicado: (2009)