Cargando…
Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes
We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images...
Autores principales: | Nagasawa, Toshihiko, Tabuchi, Hitoshi, Masumoto, Hiroki, Enno, Hiroki, Niki, Masanori, Ohsugi, Hideharu, Mitamura, Yoshinori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201738/ https://www.ncbi.nlm.nih.gov/pubmed/30370184 http://dx.doi.org/10.7717/peerj.5696 |
Ejemplares similares
-
Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy
por: Nagasato, Daisuke, et al.
Publicado: (2018) -
Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images
por: Masumoto, Hiroki, et al.
Publicado: (2019) -
Accuracy of deep learning, a machine-learning technology, using ultra–wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
por: Ohsugi, Hideharu, et al.
Publicado: (2017) -
Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography
por: Nagasawa, Toshihiko, et al.
Publicado: (2021) -
Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning
por: Nagasato, Daisuke, et al.
Publicado: (2019)