Cargando…
DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning
The development of whole slide scanners has revolutionized the field of digital pathology. Unfortunately, whole slide scanners often produce images with out-of-focus/blurry areas that limit the amount of tissue available for a pathologist to make accurate diagnosis/prognosis. Moreover, these artifac...
Autores principales: | Senaras, Caglar, Niazi, M. Khalid Khan, Lozanski, Gerard, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201886/ https://www.ncbi.nlm.nih.gov/pubmed/30359393 http://dx.doi.org/10.1371/journal.pone.0205387 |
Ejemplares similares
-
Deep Learning for Medical Image Analysis
por: Senaras, Caglar, et al.
Publicado: (2018) -
Optimized generation of high-resolution phantom images using cGAN: Application to quantification of Ki67 breast cancer images
por: Senaras, Caglar, et al.
Publicado: (2018) -
Nuclear IHC enumeration: A digital phantom to evaluate the performance of automated algorithms in digital pathology
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018) -
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Relationship between the Ki67 index and its area based approximation in breast cancer
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018)