Cargando…
Value of inventory information in allocating a limited supply of influenza vaccine during a pandemic
OBJECTIVE: To understand the value of information on vaccine inventory levels during an influenza pandemic, we propose a simulation study to compare vaccine allocation strategies using: (i) only population information (pro-rata, or population-based, PB), (ii) both population and vaccine inventory in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201932/ https://www.ncbi.nlm.nih.gov/pubmed/30359445 http://dx.doi.org/10.1371/journal.pone.0206293 |
Sumario: | OBJECTIVE: To understand the value of information on vaccine inventory levels during an influenza pandemic, we propose a simulation study to compare vaccine allocation strategies using: (i) only population information (pro-rata, or population-based, PB), (ii) both population and vaccine inventory information (population and inventory-based, PIB). METHODS: We adapt an agent-based simulation model to predict the spread of the disease both geographically and temporally. We study PB and PIB when uptake rates vary geographically. The simulation study is done from 2015 to 2017, using population and commuting data from the state of Georgia from the United States census. FINDINGS: Compared to PB under reasonable scenarios, PIB reduces the infection attack rate from 23.4% to 22.4%, decreases the amount of leftover inventory from 827 to 152 thousand, and maintains or increases the percentage of vaccinated population. CONCLUSIONS: Our results indicate the need for greater vaccine inventory visibility in public health supply chains, especially when supply is limited, and uptake rates vary geographically. Such visibility has a potential to decrease the number of infections, help identify locations with low uptake rates and to motivate public awareness efforts. |
---|