Cargando…
Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk
Biological interpretation of GWAS data frequently involves assessing whether SNPs linked to a biological process, e.g., binding of a transcription factor (TF), show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biologi...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202062/ https://www.ncbi.nlm.nih.gov/pubmed/30177862 http://dx.doi.org/10.1038/s41588-018-0196-7 |
_version_ | 1783365629800087552 |
---|---|
author | Reshef, Yakir A Finucane, Hilary K Kelley, David R Gusev, Alexander Kotliar, Dylan Ulirsch, Jacob C Hormozdiari, Farhad Nasser, Joseph O’Connor, Luke van de Geijn, Bryce Loh, Po-Ru Grossman, Sharon R Bhatia, Gaurav Gazal, Steven Palamara, Pier Francesco Pinello, Luca Patterson, Nick Adams, Ryan P Price, Alkes L |
author_facet | Reshef, Yakir A Finucane, Hilary K Kelley, David R Gusev, Alexander Kotliar, Dylan Ulirsch, Jacob C Hormozdiari, Farhad Nasser, Joseph O’Connor, Luke van de Geijn, Bryce Loh, Po-Ru Grossman, Sharon R Bhatia, Gaurav Gazal, Steven Palamara, Pier Francesco Pinello, Luca Patterson, Nick Adams, Ryan P Price, Alkes L |
author_sort | Reshef, Yakir A |
collection | PubMed |
description | Biological interpretation of GWAS data frequently involves assessing whether SNPs linked to a biological process, e.g., binding of a transcription factor (TF), show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed LD profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular QTL in blood, recovering known transcriptional regulators. We apply the method to eQTL in 48 GTEx tissues, identifying 651 TF-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average N=290K), identifying 77 annotation-trait associations representing 12 independent TF-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms. |
format | Online Article Text |
id | pubmed-6202062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-62020622019-03-03 Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk Reshef, Yakir A Finucane, Hilary K Kelley, David R Gusev, Alexander Kotliar, Dylan Ulirsch, Jacob C Hormozdiari, Farhad Nasser, Joseph O’Connor, Luke van de Geijn, Bryce Loh, Po-Ru Grossman, Sharon R Bhatia, Gaurav Gazal, Steven Palamara, Pier Francesco Pinello, Luca Patterson, Nick Adams, Ryan P Price, Alkes L Nat Genet Article Biological interpretation of GWAS data frequently involves assessing whether SNPs linked to a biological process, e.g., binding of a transcription factor (TF), show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed LD profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular QTL in blood, recovering known transcriptional regulators. We apply the method to eQTL in 48 GTEx tissues, identifying 651 TF-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average N=290K), identifying 77 annotation-trait associations representing 12 independent TF-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms. 2018-09-03 2018-10 /pmc/articles/PMC6202062/ /pubmed/30177862 http://dx.doi.org/10.1038/s41588-018-0196-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Reshef, Yakir A Finucane, Hilary K Kelley, David R Gusev, Alexander Kotliar, Dylan Ulirsch, Jacob C Hormozdiari, Farhad Nasser, Joseph O’Connor, Luke van de Geijn, Bryce Loh, Po-Ru Grossman, Sharon R Bhatia, Gaurav Gazal, Steven Palamara, Pier Francesco Pinello, Luca Patterson, Nick Adams, Ryan P Price, Alkes L Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title | Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title_full | Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title_fullStr | Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title_full_unstemmed | Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title_short | Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
title_sort | detecting genome-wide directional effects of transcription factor binding on polygenic disease risk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202062/ https://www.ncbi.nlm.nih.gov/pubmed/30177862 http://dx.doi.org/10.1038/s41588-018-0196-7 |
work_keys_str_mv | AT reshefyakira detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT finucanehilaryk detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT kelleydavidr detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT gusevalexander detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT kotliardylan detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT ulirschjacobc detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT hormozdiarifarhad detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT nasserjoseph detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT oconnorluke detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT vandegeijnbryce detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT lohporu detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT grossmansharonr detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT bhatiagaurav detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT gazalsteven detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT palamarapierfrancesco detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT pinelloluca detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT pattersonnick detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT adamsryanp detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk AT pricealkesl detectinggenomewidedirectionaleffectsoftranscriptionfactorbindingonpolygenicdiseaserisk |