Cargando…
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-reliability using exclusively topology are valuable in network biology, and their investigation facilitates the general understanding of topological mechanisms and models to draw and correct complex networ...
Autor principal: | Cannistraci, Carlo Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202355/ https://www.ncbi.nlm.nih.gov/pubmed/30361555 http://dx.doi.org/10.1038/s41598-018-33576-8 |
Ejemplares similares
-
From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2013) -
Erratum: From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2015) -
Pioneering topological methods for network-based drug–target prediction by exploiting a brain-network self-organization theory
por: Durán, Claudio, et al.
Publicado: (2017) -
“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks
por: Muscoloni, Alessandro, et al.
Publicado: (2022) -
Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2022)