Cargando…
Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials
Optimizing synthesis parameters is the key to successfully design ideal Ni-rich cathode materials that satisfy principal electrochemical specifications. We herein implement machine learning algorithms using 330 experimental datasets, obtained from a controlled environment for reliability, to constru...
Autores principales: | Min, Kyoungmin, Choi, Byungjin, Park, Kwangjin, Cho, Eunseog |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202356/ https://www.ncbi.nlm.nih.gov/pubmed/30361533 http://dx.doi.org/10.1038/s41598-018-34201-4 |
Ejemplares similares
-
Improved electrochemical properties of LiNi(0.91)Co(0.06)Mn(0.03)O(2) cathode material via Li-reactive coating with metal phosphates
por: Min, Kyoungmin, et al.
Publicado: (2017) -
Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries
por: Sattar, Tahir, et al.
Publicado: (2020) -
Re-construction layer effect of LiNi(0.8)Co(0.15)Mn(0.05)O(2) with solvent evaporation process
por: Park, Kwangjin, et al.
Publicado: (2017) -
Improving the electrochemical performances using a V-doped Ni-rich NCM cathode
por: Sim, Seoung-Ju, et al.
Publicado: (2019) -
High-Ni cathode material improved with Zr for stable cycling of Li-ion rechargeable batteries
por: Park, Kwangjin, et al.
Publicado: (2020)