Cargando…
Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-l...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202390/ https://www.ncbi.nlm.nih.gov/pubmed/30361549 http://dx.doi.org/10.1038/s41467-018-06959-8 |
_version_ | 1783365669654364160 |
---|---|
author | Molina-Luna, Leopoldo Wang, Shuai Pivak, Yevheniy Zintler, Alexander Pérez-Garza, Héctor H. Spruit, Ronald G. Xu, Qiang Yi, Min Xu, Bai-Xiang Acosta, Matias |
author_facet | Molina-Luna, Leopoldo Wang, Shuai Pivak, Yevheniy Zintler, Alexander Pérez-Garza, Héctor H. Spruit, Ronald G. Xu, Qiang Yi, Min Xu, Bai-Xiang Acosta, Matias |
author_sort | Molina-Luna, Leopoldo |
collection | PubMed |
description | Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-like nanoregions (DLNRs) up to an extreme temperature of 800 °C. We attribute this abnormal phenomenon to a chemically induced lattice strain gradient present in the core–shell nanoparticle. The strain gradient was generated by controlling the diffusion of strontium cations. By combining electrical biasing and temperature-dependent in situ TEM with phase field simulations, we analyzed the resulting strain gradient and local polarization distribution within a single nanoparticle. The analysis confirms that a local symmetry breaking, occurring due to a strain gradient (i.e. flexoelectricity), accounts for switchable polarization beyond the conventional temperature range of existing polar materials. We demonstrate that polar nanomaterials can be obtained through flexoelectricity at extreme temperature by tuning the cation diffusion. |
format | Online Article Text |
id | pubmed-6202390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-62023902018-10-29 Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion Molina-Luna, Leopoldo Wang, Shuai Pivak, Yevheniy Zintler, Alexander Pérez-Garza, Héctor H. Spruit, Ronald G. Xu, Qiang Yi, Min Xu, Bai-Xiang Acosta, Matias Nat Commun Article Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-like nanoregions (DLNRs) up to an extreme temperature of 800 °C. We attribute this abnormal phenomenon to a chemically induced lattice strain gradient present in the core–shell nanoparticle. The strain gradient was generated by controlling the diffusion of strontium cations. By combining electrical biasing and temperature-dependent in situ TEM with phase field simulations, we analyzed the resulting strain gradient and local polarization distribution within a single nanoparticle. The analysis confirms that a local symmetry breaking, occurring due to a strain gradient (i.e. flexoelectricity), accounts for switchable polarization beyond the conventional temperature range of existing polar materials. We demonstrate that polar nanomaterials can be obtained through flexoelectricity at extreme temperature by tuning the cation diffusion. Nature Publishing Group UK 2018-10-25 /pmc/articles/PMC6202390/ /pubmed/30361549 http://dx.doi.org/10.1038/s41467-018-06959-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Molina-Luna, Leopoldo Wang, Shuai Pivak, Yevheniy Zintler, Alexander Pérez-Garza, Héctor H. Spruit, Ronald G. Xu, Qiang Yi, Min Xu, Bai-Xiang Acosta, Matias Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title | Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title_full | Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title_fullStr | Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title_full_unstemmed | Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title_short | Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
title_sort | enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202390/ https://www.ncbi.nlm.nih.gov/pubmed/30361549 http://dx.doi.org/10.1038/s41467-018-06959-8 |
work_keys_str_mv | AT molinalunaleopoldo enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT wangshuai enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT pivakyevheniy enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT zintleralexander enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT perezgarzahectorh enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT spruitronaldg enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT xuqiang enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT yimin enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT xubaixiang enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion AT acostamatias enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion |