Cargando…

Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion

Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina-Luna, Leopoldo, Wang, Shuai, Pivak, Yevheniy, Zintler, Alexander, Pérez-Garza, Héctor H., Spruit, Ronald G., Xu, Qiang, Yi, Min, Xu, Bai-Xiang, Acosta, Matias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202390/
https://www.ncbi.nlm.nih.gov/pubmed/30361549
http://dx.doi.org/10.1038/s41467-018-06959-8
_version_ 1783365669654364160
author Molina-Luna, Leopoldo
Wang, Shuai
Pivak, Yevheniy
Zintler, Alexander
Pérez-Garza, Héctor H.
Spruit, Ronald G.
Xu, Qiang
Yi, Min
Xu, Bai-Xiang
Acosta, Matias
author_facet Molina-Luna, Leopoldo
Wang, Shuai
Pivak, Yevheniy
Zintler, Alexander
Pérez-Garza, Héctor H.
Spruit, Ronald G.
Xu, Qiang
Yi, Min
Xu, Bai-Xiang
Acosta, Matias
author_sort Molina-Luna, Leopoldo
collection PubMed
description Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-like nanoregions (DLNRs) up to an extreme temperature of 800 °C. We attribute this abnormal phenomenon to a chemically induced lattice strain gradient present in the core–shell nanoparticle. The strain gradient was generated by controlling the diffusion of strontium cations. By combining electrical biasing and temperature-dependent in situ TEM with phase field simulations, we analyzed the resulting strain gradient and local polarization distribution within a single nanoparticle. The analysis confirms that a local symmetry breaking, occurring due to a strain gradient (i.e. flexoelectricity), accounts for switchable polarization beyond the conventional temperature range of existing polar materials. We demonstrate that polar nanomaterials can be obtained through flexoelectricity at extreme temperature by tuning the cation diffusion.
format Online
Article
Text
id pubmed-6202390
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-62023902018-10-29 Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion Molina-Luna, Leopoldo Wang, Shuai Pivak, Yevheniy Zintler, Alexander Pérez-Garza, Héctor H. Spruit, Ronald G. Xu, Qiang Yi, Min Xu, Bai-Xiang Acosta, Matias Nat Commun Article Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate −0.25 strontium titanate (NBT-25ST) core–shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-like nanoregions (DLNRs) up to an extreme temperature of 800 °C. We attribute this abnormal phenomenon to a chemically induced lattice strain gradient present in the core–shell nanoparticle. The strain gradient was generated by controlling the diffusion of strontium cations. By combining electrical biasing and temperature-dependent in situ TEM with phase field simulations, we analyzed the resulting strain gradient and local polarization distribution within a single nanoparticle. The analysis confirms that a local symmetry breaking, occurring due to a strain gradient (i.e. flexoelectricity), accounts for switchable polarization beyond the conventional temperature range of existing polar materials. We demonstrate that polar nanomaterials can be obtained through flexoelectricity at extreme temperature by tuning the cation diffusion. Nature Publishing Group UK 2018-10-25 /pmc/articles/PMC6202390/ /pubmed/30361549 http://dx.doi.org/10.1038/s41467-018-06959-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Molina-Luna, Leopoldo
Wang, Shuai
Pivak, Yevheniy
Zintler, Alexander
Pérez-Garza, Héctor H.
Spruit, Ronald G.
Xu, Qiang
Yi, Min
Xu, Bai-Xiang
Acosta, Matias
Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title_full Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title_fullStr Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title_full_unstemmed Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title_short Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
title_sort enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202390/
https://www.ncbi.nlm.nih.gov/pubmed/30361549
http://dx.doi.org/10.1038/s41467-018-06959-8
work_keys_str_mv AT molinalunaleopoldo enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT wangshuai enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT pivakyevheniy enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT zintleralexander enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT perezgarzahectorh enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT spruitronaldg enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT xuqiang enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT yimin enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT xubaixiang enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion
AT acostamatias enablingnanoscaleflexoelectricityatextremetemperaturebytuningcationdiffusion