Cargando…
A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods
There is a widespread interest in applying pattern recognition methods to anatomical neuroimaging data, but so far, there has been relatively little investigation into how best to derive image features in order to make the most accurate predictions. In this work, a Gaussian Process machine learning...
Autores principales: | Monté-Rubio, Gemma C., Falcón, Carles, Pomarol-Clotet, Edith, Ashburner, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202442/ https://www.ncbi.nlm.nih.gov/pubmed/29864520 http://dx.doi.org/10.1016/j.neuroimage.2018.05.065 |
Ejemplares similares
-
Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis
por: Salvador, Raymond, et al.
Publicado: (2017) -
Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity
por: Ferreira, Francisca, et al.
Publicado: (2021) -
Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis
por: Moreno-Alcázar, Ana, et al.
Publicado: (2018) -
Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI()
por: Qin, Yuan-Yuan, et al.
Publicado: (2013) -
Multimodal Integration of Brain Images for MRI-Based Diagnosis in Schizophrenia
por: Salvador, Raymond, et al.
Publicado: (2019)