Cargando…
Physiologically Based Pharmacokinetic Approach to Determine Dosing on Extracorporeal Life Support: Fluconazole in Children on ECMO
Extracorporeal life support (e.g., dialysis, extracorporeal membrane oxygenation (ECMO)) can affect drug disposition, placing patients at risk for therapeutic failure. In this population, dose selection to achieve safe and effective drug exposure is difficult. We developed a novel and flexible appro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202466/ https://www.ncbi.nlm.nih.gov/pubmed/30033691 http://dx.doi.org/10.1002/psp4.12338 |
Sumario: | Extracorporeal life support (e.g., dialysis, extracorporeal membrane oxygenation (ECMO)) can affect drug disposition, placing patients at risk for therapeutic failure. In this population, dose selection to achieve safe and effective drug exposure is difficult. We developed a novel and flexible approach that uses physiologically based pharmacokinetic (PBPK) modeling to translate results from ECMO ex vivo experiments into bedside dosing recommendations. To determine fluconazole dosing in children on ECMO, we developed a PBPK model, which was validated using fluconazole pharmacokinetic (PK) data in adults and critically ill infants. Next, an ECMO compartment was added to the PBPK model and parameterized using data from a previously published ex vivo study. Simulations using the final ECMO PBPK model reasonably characterized observed PK data in infants on ECMO, and the model was used to derive dosing in children on ECMO across the pediatric age spectrum. This approach can be generalized to other forms of extracorporeal life support (ECLS), such as dialysis. |
---|