Cargando…

Filamin A inhibits tumor progression through regulating BRCA1 expression in human breast cancer

Filamin A (FlnA) is an actin cross-linking protein. Previous studies have demonstrated its role in tumor progression in a wide range of cancer types. It has been reported that FlnA interacts with the DNA damage response protein, breast cancer gene 1 (BRCA1), which is a tumor suppressor gene. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yundi, Li, Ming, Bai, Guanghui, Li, Xiaoning, Sun, Zhongwen, Yang, Jie, Wang, Lu, Sun, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202495/
https://www.ncbi.nlm.nih.gov/pubmed/30405761
http://dx.doi.org/10.3892/ol.2018.9473
Descripción
Sumario:Filamin A (FlnA) is an actin cross-linking protein. Previous studies have demonstrated its role in tumor progression in a wide range of cancer types. It has been reported that FlnA interacts with the DNA damage response protein, breast cancer gene 1 (BRCA1), which is a tumor suppressor gene. However, to the best of our knowledge, there are no studies evaluating the association of these genes in human carcinomas. In the present study, the immunohistochemistry of a tissue microarray was used to investigate the clinical significance of FlnA and BRCA1 expression in pathological specimens collected from 424 patients treated for breast cancer. In addition, FlnA and BRCA1 expression was downregulated in the breast cancer cell line, MCF-7, through FlnA RNA interference. FlnA expression was exhibited by cancer tissues collected from 137 patients with breast cancer, which also exhibited high expression of BRCA1 and were associated with a relatively long survival time. A significant association was identified between FlnA protein expression and tumor size, and between FlnA protein expression and progesterone receptor expression. These results suggest that BRCA1 expression could be regulated by FlnA in the breast cancer cell line, MCF-7. Overall, the present study demonstrates that FlnA expression was associated with BRAC1 expression and tumor size in breast cancer, which provides important implications for future study of FlnA in the progression of human breast cancer.