Cargando…

Delivery of Inorganic Polyphosphate into Cells Using Amphipathic Oligocarbonate Transporters

[Image: see text] Inorganic polyphosphate (polyP) is an often-overlooked biopolymer of phosphate residues present in living cells. PolyP is associated with many essential biological roles. Despite interest in polyP’s function, most studies have been limited to extracellular or isolated protein exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandes-Cunha, Gabriella M., McKinlay, Colin J., Vargas, Jessica R., Jessen, Henning J., Waymouth, Robert M., Wender, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202642/
https://www.ncbi.nlm.nih.gov/pubmed/30410977
http://dx.doi.org/10.1021/acscentsci.8b00470
Descripción
Sumario:[Image: see text] Inorganic polyphosphate (polyP) is an often-overlooked biopolymer of phosphate residues present in living cells. PolyP is associated with many essential biological roles. Despite interest in polyP’s function, most studies have been limited to extracellular or isolated protein experiments, as polyanionic polyP does not traverse the nonpolar membrane of cells. To address this problem, we developed a robust, readily employed method for polyP delivery using guanidinium-rich oligocarbonate transporters that electrostatically complex polyPs of multiple lengths, forming discrete nanoparticles that are resistant to phosphatase degradation and that readily enter multiple cell types. Fluorescently labeled polyPs have been monitored over time for subcellular localization and release from the transporter, with control over release rates achieved by modulating the transporter identity and the charge ratio of the electrostatic complexes. This general approach to polyP delivery enables the study of intracellular polyP signaling in a variety of applications.