Cargando…
A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas
OBJECTIVE: The aim of this study was to develop a radiomics signature for prediction of progression-free survival (PFS) in lower-grade gliomas and to investigate the genetic background behind the radiomics signature. METHODS: In this retrospective study, training (n = 216) and validation (n = 84) co...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202688/ https://www.ncbi.nlm.nih.gov/pubmed/30366279 http://dx.doi.org/10.1016/j.nicl.2018.10.014 |
Sumario: | OBJECTIVE: The aim of this study was to develop a radiomics signature for prediction of progression-free survival (PFS) in lower-grade gliomas and to investigate the genetic background behind the radiomics signature. METHODS: In this retrospective study, training (n = 216) and validation (n = 84) cohorts were collected from the Chinese Glioma Genome Atlas and the Cancer Genome Atlas, respectively. For each patient, a total of 431 radiomics features were extracted from preoperative T2-weighted magnetic resonance images. A radiomics signature was generated in the training cohort, and its prognostic value was evaluated in both the training and validation cohorts. The genetic characteristics of the group with high-risk scores were identified by radiogenomic analysis, and a nomogram was established for prediction of PFS. RESULTS: There was a significant association between the radiomics signature (including 9 screened radiomics features) and PFS, which was independent of other clinicopathologic factors in both the training (P < 0.001, multivariable Cox regression) and validation (P = 0.045, multivariable Cox regression) cohorts. Radiogenomic analysis revealed that the radiomics signature was associated with the immune response, programmed cell death, cell proliferation, and vasculature development. A nomogram established using the radiomics signature and clinicopathologic risk factors demonstrated high accuracy and good calibration for prediction of PFS in both the training (C-index, 0.684) and validation (C-index, 0.823) cohorts. CONCLUSIONS: PFS can be predicted non-invasively in patients with LGGs by a group of radiomics features that could reflect the biological processes of these tumors. |
---|