Cargando…

Exploring nutrient limitation for polyhydroxyalkanoates synthesis by newly isolated strains of Aeromonas sp. using biodiesel-derived glycerol as a substrate

Aeromonas spp. strains isolated from activated sludge in a municipal wastewater treatment plant were found to be able to synthesize polyhydroxyalkanoates (PHA) utilizing pure and crude glycerol. The 16S rRNA gene sequence of the isolates exhibited similarity to Aeromonas hydrophila, A. aquatica, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Możejko-Ciesielska, Justyna, Pokoj, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202957/
https://www.ncbi.nlm.nih.gov/pubmed/30370188
http://dx.doi.org/10.7717/peerj.5838
Descripción
Sumario:Aeromonas spp. strains isolated from activated sludge in a municipal wastewater treatment plant were found to be able to synthesize polyhydroxyalkanoates (PHA) utilizing pure and crude glycerol. The 16S rRNA gene sequence of the isolates exhibited similarity to Aeromonas hydrophila, A. aquatica, and A. salmonicida. Our results confirmed that the adequate supply of nitrogen and phosphorus during culture in 250-ml shake flasks did not stimulate the synthesis of PHAs. The results indicate that the PHA content of cells was higher under a phosphorus-limiting environment compared to nitrogen starvation. In the two-stage cultivation using glucose (in the first step) and crude glycerol from biodiesel industry (in the second step) as a component of the growth medium, the analyzed strains grew to 3.06 g/l of cell dry weight containing up to 22% of PHAs. Furthermore, during the same culture strategy up to 42% of PHAs were extracted, when in the second step of the process, Aeromonas sp. AC_03 was grown on pure glycerol under phosphorus limitation. The purified biopolymer was confirmed to be polyhydroxybutyrate. Aeromonas sp. AC_02 was also capable to accumulate the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer when pure glycerol was added as a substrate under nitrogen-deficiency one-step bioprocess. Our results confirm that due to the biopolymer productivity, newly isolated strains could be exploited for obtaining valuable biopolymers using wastes generated from biodiesel industry.