Cargando…
Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors
BACKGROUND: Transplantation of pancreatic β cells generated in vitro from pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) has been proposed as an alternative therapy for diabetes. Though many differentiation protocols have been developed f...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203190/ https://www.ncbi.nlm.nih.gov/pubmed/30359326 http://dx.doi.org/10.1186/s13287-018-1038-3 |
_version_ | 1783365830734512128 |
---|---|
author | Ida, Hideomi Akiyama, Tomohiko Ishiguro, Keiichiro Goparaju, Sravan K. Nakatake, Yuhki Chikazawa-Nohtomi, Nana Sato, Saeko Kimura, Hiromi Yokoyama, Yukihiro Nagino, Masato Ko, Minoru S. H. Ko, Shigeru B. H. |
author_facet | Ida, Hideomi Akiyama, Tomohiko Ishiguro, Keiichiro Goparaju, Sravan K. Nakatake, Yuhki Chikazawa-Nohtomi, Nana Sato, Saeko Kimura, Hiromi Yokoyama, Yukihiro Nagino, Masato Ko, Minoru S. H. Ko, Shigeru B. H. |
author_sort | Ida, Hideomi |
collection | PubMed |
description | BACKGROUND: Transplantation of pancreatic β cells generated in vitro from pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) has been proposed as an alternative therapy for diabetes. Though many differentiation protocols have been developed for this purpose, lentivirus-mediated forced expression of transcription factors (TF)—PDX1 and NKX6.1—has been at the forefront for its relatively fast and straightforward approach. However, considering that such cells will be used for therapeutic purposes in the future, it is desirable to develop a procedure that does not leave any footprint on the genome, as any changes of DNAs could potentially be a source of unintended, concerning effects such as tumorigenicity. In this study, we attempted to establish a novel protocol for rapid and footprint-free hESC differentiation into a pancreatic endocrine lineage by using synthetic mRNAs (synRNAs) encoding PDX1 and NKX6.1. We also tested whether siPOU5F1, which reduces the expression of pluripotency gene POU5F1 (also known as OCT4), can enhance differentiation as reported previously for mesoderm and endoderm lineages. METHODS: synRNA-PDX1 and synRNA-NKX6.1 were synthesized in vitro and were transfected five times to hESCs with a lipofection reagent in a modified differentiation culture condition. siPOU5F1 was included only in the first transfection. Subsequently, cells were seeded onto a low attachment plate and aggregated by an orbital shaker. At day 13, the degree of differentiation was assessed by quantitative RT-PCR (qRT-PCR) and immunohistochemistry for endocrine hormones such as insulin, glucagon, and somatostatin. RESULTS: Both PDX1 and NKX6.1 expression were detected in cells co-transfected with synRNA-PDX1 and synRNA-NKX6.1 at day 3. Expression levels of insulin in the transfected cells at day 13 were 450 times and 14 times higher by qRT-PCR compared to the levels at day 0 and in cells cultured without synRNA transfection, respectively. Immunohistochemically, pancreatic endocrine hormones were not detected in cells cultured without synRNA transfection but were highly expressed in cells transfected with synRNA-PDX1, synRNA-NKX6.1, and siPOU5F1 at as early as day 13. CONCLUSIONS: In this study, we report a novel protocol for rapid and footprint-free differentiation of hESCs to endocrine cells. |
format | Online Article Text |
id | pubmed-6203190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62031902018-11-01 Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors Ida, Hideomi Akiyama, Tomohiko Ishiguro, Keiichiro Goparaju, Sravan K. Nakatake, Yuhki Chikazawa-Nohtomi, Nana Sato, Saeko Kimura, Hiromi Yokoyama, Yukihiro Nagino, Masato Ko, Minoru S. H. Ko, Shigeru B. H. Stem Cell Res Ther Research BACKGROUND: Transplantation of pancreatic β cells generated in vitro from pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) has been proposed as an alternative therapy for diabetes. Though many differentiation protocols have been developed for this purpose, lentivirus-mediated forced expression of transcription factors (TF)—PDX1 and NKX6.1—has been at the forefront for its relatively fast and straightforward approach. However, considering that such cells will be used for therapeutic purposes in the future, it is desirable to develop a procedure that does not leave any footprint on the genome, as any changes of DNAs could potentially be a source of unintended, concerning effects such as tumorigenicity. In this study, we attempted to establish a novel protocol for rapid and footprint-free hESC differentiation into a pancreatic endocrine lineage by using synthetic mRNAs (synRNAs) encoding PDX1 and NKX6.1. We also tested whether siPOU5F1, which reduces the expression of pluripotency gene POU5F1 (also known as OCT4), can enhance differentiation as reported previously for mesoderm and endoderm lineages. METHODS: synRNA-PDX1 and synRNA-NKX6.1 were synthesized in vitro and were transfected five times to hESCs with a lipofection reagent in a modified differentiation culture condition. siPOU5F1 was included only in the first transfection. Subsequently, cells were seeded onto a low attachment plate and aggregated by an orbital shaker. At day 13, the degree of differentiation was assessed by quantitative RT-PCR (qRT-PCR) and immunohistochemistry for endocrine hormones such as insulin, glucagon, and somatostatin. RESULTS: Both PDX1 and NKX6.1 expression were detected in cells co-transfected with synRNA-PDX1 and synRNA-NKX6.1 at day 3. Expression levels of insulin in the transfected cells at day 13 were 450 times and 14 times higher by qRT-PCR compared to the levels at day 0 and in cells cultured without synRNA transfection, respectively. Immunohistochemically, pancreatic endocrine hormones were not detected in cells cultured without synRNA transfection but were highly expressed in cells transfected with synRNA-PDX1, synRNA-NKX6.1, and siPOU5F1 at as early as day 13. CONCLUSIONS: In this study, we report a novel protocol for rapid and footprint-free differentiation of hESCs to endocrine cells. BioMed Central 2018-10-25 /pmc/articles/PMC6203190/ /pubmed/30359326 http://dx.doi.org/10.1186/s13287-018-1038-3 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ida, Hideomi Akiyama, Tomohiko Ishiguro, Keiichiro Goparaju, Sravan K. Nakatake, Yuhki Chikazawa-Nohtomi, Nana Sato, Saeko Kimura, Hiromi Yokoyama, Yukihiro Nagino, Masato Ko, Minoru S. H. Ko, Shigeru B. H. Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title | Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title_full | Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title_fullStr | Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title_full_unstemmed | Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title_short | Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors |
title_sort | establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mrnas encoding transcription factors |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203190/ https://www.ncbi.nlm.nih.gov/pubmed/30359326 http://dx.doi.org/10.1186/s13287-018-1038-3 |
work_keys_str_mv | AT idahideomi establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT akiyamatomohiko establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT ishigurokeiichiro establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT goparajusravank establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT nakatakeyuhki establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT chikazawanohtominana establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT satosaeko establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT kimurahiromi establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT yokoyamayukihiro establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT naginomasato establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT kominorush establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors AT koshigerubh establishmentofarapidandfootprintfreeprotocolfordifferentiationofhumanembryonicstemcellsintopancreaticendocrinecellswithsyntheticmrnasencodingtranscriptionfactors |