Cargando…
PINES: phenotype-informed tissue weighting improves prediction of pathogenic noncoding variants
Functional characterization of the noncoding genome is essential for biological understanding of gene regulation and disease. Here, we introduce the computational framework PINES (Phenotype-Informed Noncoding Element Scoring), which predicts the functional impact of noncoding variants by integrating...
Autores principales: | Bodea, Corneliu A., Mitchell, Adele A., Bloemendal, Alex, Day-Williams, Aaron G., Runz, Heiko, Sunyaev, Shamil R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203199/ https://www.ncbi.nlm.nih.gov/pubmed/30359302 http://dx.doi.org/10.1186/s13059-018-1546-6 |
Ejemplares similares
-
CCRaVAT and QuTie - enabling analysis of rare variants in large-scale case control and quantitative trait association studies
por: Lawrence, Robert, et al.
Publicado: (2010) -
ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants
por: Patel, Ronak Y., et al.
Publicado: (2017) -
lncEvo: automated identification and conservation study of long noncoding RNAs
por: Bryzghalov, Oleksii, et al.
Publicado: (2021) -
Identification of pathogen genomic variants through an integrated pipeline
por: Manary, Micah J, et al.
Publicado: (2014) -
Functional architecture of low-frequency variants highlights strength
of negative selection across coding and noncoding annotations
por: Gazal, Steven, et al.
Publicado: (2018)