Cargando…
Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system
The development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203222/ https://www.ncbi.nlm.nih.gov/pubmed/30397649 http://dx.doi.org/10.1126/sciadv.aau1665 |
_version_ | 1783365838295793664 |
---|---|
author | Zhu, Xuanbo Hao, Junran Bao, Bin Zhou, Yahong Zhang, Haibo Pang, Jinhui Jiang, Zhenhua Jiang, Lei |
author_facet | Zhu, Xuanbo Hao, Junran Bao, Bin Zhou, Yahong Zhang, Haibo Pang, Jinhui Jiang, Zhenhua Jiang, Lei |
author_sort | Zhu, Xuanbo |
collection | PubMed |
description | The development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus membrane with ionic diode–type current would be the most efficient material. Therefore, rectified ionic transportation in a hypersaline environment (the salt concentration is at least 0.5 M in sea) is highly desired, but it still remains a challenge. Here, we demonstrate a versatile strategy for creating a scale-up Janus three-dimensional (3D) porous membrane–based osmotic power generator system. Janus membranes with tunable surface charge density and porosity were obtained by compounding two kinds of ionomers. Under electric fields or chemical gradients, the Janus membrane has ionic current rectification properties and anion selectivities in a hypersaline environment. Experiments and theoretical calculation demonstrate that abundant surface charge and narrow pore size distribution benefit this unique ionic transport behavior in high salt solution. Thus, the output power density of this membrane-based generator reaches 2.66 W/m(2) (mixing seawater and river water) and up to 5.10 W/m(2) at a 500-fold salinity gradient (i.e., flowing salt lake into river water). Furthermore, a generator, built by connecting a series of membranes, could power a calculator for 120 hours without obvious current decline, proving the excellent physical and chemical stabilities. Therefore, we believe that this work advances the fundamental understanding of fluid transport and materials design as a paradigm for a high-performance energy conversion generator. |
format | Online Article Text |
id | pubmed-6203222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62032222018-11-05 Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system Zhu, Xuanbo Hao, Junran Bao, Bin Zhou, Yahong Zhang, Haibo Pang, Jinhui Jiang, Zhenhua Jiang, Lei Sci Adv Research Articles The development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus membrane with ionic diode–type current would be the most efficient material. Therefore, rectified ionic transportation in a hypersaline environment (the salt concentration is at least 0.5 M in sea) is highly desired, but it still remains a challenge. Here, we demonstrate a versatile strategy for creating a scale-up Janus three-dimensional (3D) porous membrane–based osmotic power generator system. Janus membranes with tunable surface charge density and porosity were obtained by compounding two kinds of ionomers. Under electric fields or chemical gradients, the Janus membrane has ionic current rectification properties and anion selectivities in a hypersaline environment. Experiments and theoretical calculation demonstrate that abundant surface charge and narrow pore size distribution benefit this unique ionic transport behavior in high salt solution. Thus, the output power density of this membrane-based generator reaches 2.66 W/m(2) (mixing seawater and river water) and up to 5.10 W/m(2) at a 500-fold salinity gradient (i.e., flowing salt lake into river water). Furthermore, a generator, built by connecting a series of membranes, could power a calculator for 120 hours without obvious current decline, proving the excellent physical and chemical stabilities. Therefore, we believe that this work advances the fundamental understanding of fluid transport and materials design as a paradigm for a high-performance energy conversion generator. American Association for the Advancement of Science 2018-10-26 /pmc/articles/PMC6203222/ /pubmed/30397649 http://dx.doi.org/10.1126/sciadv.aau1665 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zhu, Xuanbo Hao, Junran Bao, Bin Zhou, Yahong Zhang, Haibo Pang, Jinhui Jiang, Zhenhua Jiang, Lei Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title | Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title_full | Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title_fullStr | Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title_full_unstemmed | Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title_short | Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system |
title_sort | unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203222/ https://www.ncbi.nlm.nih.gov/pubmed/30397649 http://dx.doi.org/10.1126/sciadv.aau1665 |
work_keys_str_mv | AT zhuxuanbo uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT haojunran uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT baobin uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT zhouyahong uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT zhanghaibo uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT pangjinhui uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT jiangzhenhua uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem AT jianglei uniqueionrectificationinhypersalineenvironmentahighperformanceandsustainablepowergeneratorsystem |