Cargando…
Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges
OBJECTIVES: The aim of this study was to identify anatomical indication ranges for different lateral wall cochlear implant electrodes to support surgeons in the preoperative preparation. METHODS: 272 patients who were implanted with a FLEX(20,) FLEX(24), FLEX(28), or a custom-made device (CMD) were...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203394/ https://www.ncbi.nlm.nih.gov/pubmed/30365565 http://dx.doi.org/10.1371/journal.pone.0206435 |
_version_ | 1783365868520996864 |
---|---|
author | Timm, Max Eike Majdani, Omid Weller, Tobias Windeler, Mayra Lenarz, Thomas Büchner, Andreas Salcher, Rolf Benedikt |
author_facet | Timm, Max Eike Majdani, Omid Weller, Tobias Windeler, Mayra Lenarz, Thomas Büchner, Andreas Salcher, Rolf Benedikt |
author_sort | Timm, Max Eike |
collection | PubMed |
description | OBJECTIVES: The aim of this study was to identify anatomical indication ranges for different lateral wall cochlear implant electrodes to support surgeons in the preoperative preparation. METHODS: 272 patients who were implanted with a FLEX(20,) FLEX(24), FLEX(28), or a custom-made device (CMD) were included in this study. The cochlear duct length (CDL) and basal cochlear diameter (length A) were measured within preoperative imaging data. The parameter A was then employed to additionally compute CDL estimates using literature approaches. Moreover, the inserted electrode length (IEL) and insertion angle (IA) were measured in postoperative CT data. By combining the preoperative measurements with the IA data, the covered cochlea length (CCL) and relative cochlear coverage (CC) were determined for each cochlea. RESULTS: The measurements of the CDL show comparable results to previous studies. While CDL measurements and estimations cover similar ranges overall, severe deviations occur in individual cases. The electrode specific IEL and CCL are fairly consistent and increase with longer electrodes, but relatively wide ranges of electrode specific CC values were found due to the additional dependence on the respective CDL. Using the correlation of IEL and CCL across electrode arrays, CDL ranges for selected arrays were developed (FLEX(24): 31.3–34.4, FLEX(28): 36.2–40.1, FLEX(Soft): 40.6–44.9). CONCLUSIONS: Our analysis shows that electrode specific CC varies due to the CDL variation. Preoperative measurement of the CDL allows for an individualized implant length selection yielding optimized stimulation and a reduced risk of intraoperative trauma. The CDL, as derived from preoperative CT imaging studies, can help the implant surgeon select the appropriate electrode array to maximize the patient’s outcomes. |
format | Online Article Text |
id | pubmed-6203394 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62033942018-11-19 Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges Timm, Max Eike Majdani, Omid Weller, Tobias Windeler, Mayra Lenarz, Thomas Büchner, Andreas Salcher, Rolf Benedikt PLoS One Research Article OBJECTIVES: The aim of this study was to identify anatomical indication ranges for different lateral wall cochlear implant electrodes to support surgeons in the preoperative preparation. METHODS: 272 patients who were implanted with a FLEX(20,) FLEX(24), FLEX(28), or a custom-made device (CMD) were included in this study. The cochlear duct length (CDL) and basal cochlear diameter (length A) were measured within preoperative imaging data. The parameter A was then employed to additionally compute CDL estimates using literature approaches. Moreover, the inserted electrode length (IEL) and insertion angle (IA) were measured in postoperative CT data. By combining the preoperative measurements with the IA data, the covered cochlea length (CCL) and relative cochlear coverage (CC) were determined for each cochlea. RESULTS: The measurements of the CDL show comparable results to previous studies. While CDL measurements and estimations cover similar ranges overall, severe deviations occur in individual cases. The electrode specific IEL and CCL are fairly consistent and increase with longer electrodes, but relatively wide ranges of electrode specific CC values were found due to the additional dependence on the respective CDL. Using the correlation of IEL and CCL across electrode arrays, CDL ranges for selected arrays were developed (FLEX(24): 31.3–34.4, FLEX(28): 36.2–40.1, FLEX(Soft): 40.6–44.9). CONCLUSIONS: Our analysis shows that electrode specific CC varies due to the CDL variation. Preoperative measurement of the CDL allows for an individualized implant length selection yielding optimized stimulation and a reduced risk of intraoperative trauma. The CDL, as derived from preoperative CT imaging studies, can help the implant surgeon select the appropriate electrode array to maximize the patient’s outcomes. Public Library of Science 2018-10-26 /pmc/articles/PMC6203394/ /pubmed/30365565 http://dx.doi.org/10.1371/journal.pone.0206435 Text en © 2018 Timm et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Timm, Max Eike Majdani, Omid Weller, Tobias Windeler, Mayra Lenarz, Thomas Büchner, Andreas Salcher, Rolf Benedikt Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title | Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title_full | Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title_fullStr | Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title_full_unstemmed | Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title_short | Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
title_sort | patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203394/ https://www.ncbi.nlm.nih.gov/pubmed/30365565 http://dx.doi.org/10.1371/journal.pone.0206435 |
work_keys_str_mv | AT timmmaxeike patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT majdaniomid patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT wellertobias patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT windelermayra patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT lenarzthomas patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT buchnerandreas patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges AT salcherrolfbenedikt patientspecificselectionoflateralwallcochlearimplantelectrodesbasedonanatomicalindicationranges |