Cargando…

Non-diagnostic symptoms in a mouse model of autism in relation to neuroanatomy: the BTBR strain reinvestigated

Several mouse models of autism spectrum disorder (ASD), including the BTBR T + tf/J (BTBR) inbred strain, display a diverse array of behavioral deficits with particular face validity. Here we propose that phenotyping these preclinical models of ASD should avoid excessive reliance on appearance valid...

Descripción completa

Detalles Bibliográficos
Autores principales: Faraji, Jamshid, Karimi, Mitra, Lawrence, Cassandra, Mohajerani, Majid H., Metz, Gerlinde A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203744/
https://www.ncbi.nlm.nih.gov/pubmed/30367028
http://dx.doi.org/10.1038/s41398-018-0280-x
Descripción
Sumario:Several mouse models of autism spectrum disorder (ASD), including the BTBR T + tf/J (BTBR) inbred strain, display a diverse array of behavioral deficits with particular face validity. Here we propose that phenotyping these preclinical models of ASD should avoid excessive reliance on appearance validity of the behavioral observations. BTBR mice were examined in three non-diagnostic symptoms modalities, beside an anatomical investigation for construct validity. The BTBR strain displayed poor sensorimotor integration as reflected by shorter stride length and greater latency on the balance beam task (BBT) when compared with C57BL/6 (B6) controls. Also, locomotor indices in the open-field task (OFT) revealed that BTBR mice traveled longer distances with a remarkably faster exploration than the B6 group in favor of hyperactivity and impulsiveness. Furthermore, analysis of spatial performance including search strategies in the Morris water task (MWT) indicated spatial impairment in the BTBR strain due to failure to employ spatial strategies during navigation. Quantitative cytoarchitectonics and volumetric examinations also indicated abnormal cortical and subcortical morphology in the BTBR mice. The results are discussed in relation to the neuroanatomical correlates of motor and cognitive impairments in the BTBR strain. We conclude that non-diagnostic autistic-like symptoms in the BTBR mouse strain can be impacted by autism risk factors in a similar way than the traditional diagnostic signs.