Cargando…
Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data
Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted therapy. Novel molecules are urgently required for the diagnosis and prognosis of LUSC. Here, we conducted our data mining analysis for LUSC by integrating the differentially expressed genes a...
Autores principales: | Li, Yin, Gu, Jie, Xu, Fengkai, Zhu, Qiaoliang, Ge, Di, Lu, Chunlai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203807/ https://www.ncbi.nlm.nih.gov/pubmed/30367091 http://dx.doi.org/10.1038/s41598-018-34160-w |
Ejemplares similares
-
A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies
por: Li, Yin, et al.
Publicado: (2019) -
TEX9 and eIF3b functionally synergize to promote the progression of esophageal squamous cell carcinoma
por: Xu, Fengkai, et al.
Publicado: (2019) -
Mining GEO and TCGA Database for Immune Microenvironment of Lung Squamous Cell Carcinoma Patients With or Without Chemotherapy
por: Qiang, Huiping, et al.
Publicado: (2022) -
Integrated TCGA and GEO analysis showed that SMAD7 is an independent prognostic factor for lung adenocarcinoma
por: Dai, Zhou-Tong, et al.
Publicado: (2020) -
An individual nomogram can reliably predict tumor spread through air spaces in non-small-cell lung cancer
por: Wang, Shuai, et al.
Publicado: (2022)