Cargando…
Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source
Computed Tomography (CT) is a powerful method for non-destructive testing (NDT) and metrology awakes with expanding application fields. To improve the spatial resolution of high energy CT, a micro-spot gamma-ray source based on bremsstrahlung from a laser wakefield accelerator was developed. A high...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203838/ https://www.ncbi.nlm.nih.gov/pubmed/30367090 http://dx.doi.org/10.1038/s41598-018-33844-7 |
Sumario: | Computed Tomography (CT) is a powerful method for non-destructive testing (NDT) and metrology awakes with expanding application fields. To improve the spatial resolution of high energy CT, a micro-spot gamma-ray source based on bremsstrahlung from a laser wakefield accelerator was developed. A high energy CT using the source was performed, which shows that the resolution of reconstruction can reach 100 μm at 10% contrast. Our proof-of-principle demonstration indicates that laser driven micro-spot gamma-ray sources provide a prospective way to increase the spatial resolution and toward to high energy micro CT. Due to the advantage in spatial resolution, laser based high energy CT represents a large potential for many NDT applications. |
---|