Cargando…
High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers
Electrical communication between an enzyme and an electrode is one of the most important factors in determining the performance of biofuel cells. Here, we introduce a glucose oxidase-coated metallic cotton fiber-based hybrid biofuel cell with efficient electrical communication between the anodic enz...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203850/ https://www.ncbi.nlm.nih.gov/pubmed/30367069 http://dx.doi.org/10.1038/s41467-018-06994-5 |
Sumario: | Electrical communication between an enzyme and an electrode is one of the most important factors in determining the performance of biofuel cells. Here, we introduce a glucose oxidase-coated metallic cotton fiber-based hybrid biofuel cell with efficient electrical communication between the anodic enzyme and the conductive support. Gold nanoparticles are layer-by-layer assembled with small organic linkers onto cotton fibers to form metallic cotton fibers with extremely high conductivity (>2.1×10(4) S cm(−1)), and are used as an enzyme-free cathode as well as a conductive support for the enzymatic anode. For preparation of the anode, the glucose oxidase is sequentially layer-by-layer-assembled with the same linkers onto the metallic cotton fibers. The resulting biofuel cells exhibit a remarkable power density of 3.7 mW cm(−2), significantly outperforming conventional biofuel cells. Our strategy to promote charge transfer through electrodes can provide an important tool to improve the performance of biofuel cells. |
---|