Cargando…
Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice
BACKGROUND: Given the seriousness of chemotherapy-induced ovarian injury in female cancer patients, the preservation of fertility, including through the use of cryopreservation technology and pharmaceuticals, requires investigation. Previous studies have shown that damage to the ovaries is related t...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204278/ https://www.ncbi.nlm.nih.gov/pubmed/30368246 http://dx.doi.org/10.1186/s12958-018-0426-y |
_version_ | 1783366017523646464 |
---|---|
author | Qin, Ying Iwase, Akira Murase, Tomohiko Bayasula Ishida, Chiharu Kato, Nao Nakamura, Tomoko Osuka, Satoko Takikawa, Sachiko Goto, Maki Kotani, Tomomi Kikkawa, Fumitaka |
author_facet | Qin, Ying Iwase, Akira Murase, Tomohiko Bayasula Ishida, Chiharu Kato, Nao Nakamura, Tomoko Osuka, Satoko Takikawa, Sachiko Goto, Maki Kotani, Tomomi Kikkawa, Fumitaka |
author_sort | Qin, Ying |
collection | PubMed |
description | BACKGROUND: Given the seriousness of chemotherapy-induced ovarian injury in female cancer patients, the preservation of fertility, including through the use of cryopreservation technology and pharmaceuticals, requires investigation. Previous studies have shown that damage to the ovaries is related to oxidative stress caused by anticancer drugs. Therefore, superoxide dismutase (SOD) may represent a key factor in the pharmacological protection of the ovaries. The aim of our study was to identify the effects of mangafodipir, a manganese chelate and SOD-mimetic, on suppression of apoptosis in granulosa cells and primordial follicle activation induced by anticancer drugs. METHODS: Cell viability assays using methyltrichlorosilane solutions and immunoblotting for cleaved caspase-3 were performed in in vitro experiments with the simultaneous addition of mangafodipir to human non-luteinized granulosa cell line (HGrC) cultures treated with hydrogen peroxide (H(2)O(2)), cisplatin, or paclitaxel. Count and morphological analyses of follicles at each developing stage in the ovaries and immunohistochemistry for cleaved caspase-3, Ki67 and 4-hydroxynonenal, a marker for oxidative stress, were also performed using mangafodipir-injected 6-week-old female ICR mice treated with cisplatin or paclitaxel. Further, mangafodipir was injected into 6-week-old female BALB/c mice inoculated with ES-2 to analyze whether mangafodipir inhibits the anti-tumor effects of cisplatin or paclitaxel treatment. RESULTS: Mangafodipir attenuated apoptosis induced by H(2)O(2) and anticancer drugs in vitro. Mangafodipir also decreased the expression of 4-hydroxynonenal and reduced cisplatin- and paclitaxel-induced apoptosis in granulosa cells in vivo. In addition, mangafodipir inhibited the loss of primordial follicles. Tumor xenograft studies in mice showed that mangafodipir did not affect anticancer drug antitumor effects. CONCLUSIONS: Oxidative stress might be one of the mechanisms of cisplatin- and paclitaxel-induced the loss of primordial follicles. Mangafodipir can reduce cisplatin- and paclitaxel-induced apoptosis in granulosa cells and primordial follicle activation partially via its SOD activity. At the same time, mangafodipir might have other potential mechanisms to inhibit the activation of primordial follicles. Further, mangafodipir attenuated the ovarian damage caused by cisplatin and paclitaxel without affecting their antitumor activities. Mangafodipir, therefore, though its efficacy might be limited, may be a new option for the preservation of fertility during anticancer treatment. |
format | Online Article Text |
id | pubmed-6204278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62042782018-10-31 Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice Qin, Ying Iwase, Akira Murase, Tomohiko Bayasula Ishida, Chiharu Kato, Nao Nakamura, Tomoko Osuka, Satoko Takikawa, Sachiko Goto, Maki Kotani, Tomomi Kikkawa, Fumitaka Reprod Biol Endocrinol Research BACKGROUND: Given the seriousness of chemotherapy-induced ovarian injury in female cancer patients, the preservation of fertility, including through the use of cryopreservation technology and pharmaceuticals, requires investigation. Previous studies have shown that damage to the ovaries is related to oxidative stress caused by anticancer drugs. Therefore, superoxide dismutase (SOD) may represent a key factor in the pharmacological protection of the ovaries. The aim of our study was to identify the effects of mangafodipir, a manganese chelate and SOD-mimetic, on suppression of apoptosis in granulosa cells and primordial follicle activation induced by anticancer drugs. METHODS: Cell viability assays using methyltrichlorosilane solutions and immunoblotting for cleaved caspase-3 were performed in in vitro experiments with the simultaneous addition of mangafodipir to human non-luteinized granulosa cell line (HGrC) cultures treated with hydrogen peroxide (H(2)O(2)), cisplatin, or paclitaxel. Count and morphological analyses of follicles at each developing stage in the ovaries and immunohistochemistry for cleaved caspase-3, Ki67 and 4-hydroxynonenal, a marker for oxidative stress, were also performed using mangafodipir-injected 6-week-old female ICR mice treated with cisplatin or paclitaxel. Further, mangafodipir was injected into 6-week-old female BALB/c mice inoculated with ES-2 to analyze whether mangafodipir inhibits the anti-tumor effects of cisplatin or paclitaxel treatment. RESULTS: Mangafodipir attenuated apoptosis induced by H(2)O(2) and anticancer drugs in vitro. Mangafodipir also decreased the expression of 4-hydroxynonenal and reduced cisplatin- and paclitaxel-induced apoptosis in granulosa cells in vivo. In addition, mangafodipir inhibited the loss of primordial follicles. Tumor xenograft studies in mice showed that mangafodipir did not affect anticancer drug antitumor effects. CONCLUSIONS: Oxidative stress might be one of the mechanisms of cisplatin- and paclitaxel-induced the loss of primordial follicles. Mangafodipir can reduce cisplatin- and paclitaxel-induced apoptosis in granulosa cells and primordial follicle activation partially via its SOD activity. At the same time, mangafodipir might have other potential mechanisms to inhibit the activation of primordial follicles. Further, mangafodipir attenuated the ovarian damage caused by cisplatin and paclitaxel without affecting their antitumor activities. Mangafodipir, therefore, though its efficacy might be limited, may be a new option for the preservation of fertility during anticancer treatment. BioMed Central 2018-10-27 /pmc/articles/PMC6204278/ /pubmed/30368246 http://dx.doi.org/10.1186/s12958-018-0426-y Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Qin, Ying Iwase, Akira Murase, Tomohiko Bayasula Ishida, Chiharu Kato, Nao Nakamura, Tomoko Osuka, Satoko Takikawa, Sachiko Goto, Maki Kotani, Tomomi Kikkawa, Fumitaka Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title | Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title_full | Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title_fullStr | Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title_full_unstemmed | Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title_short | Protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
title_sort | protective effects of mangafodipir against chemotherapy-induced ovarian damage in mice |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204278/ https://www.ncbi.nlm.nih.gov/pubmed/30368246 http://dx.doi.org/10.1186/s12958-018-0426-y |
work_keys_str_mv | AT qinying protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT iwaseakira protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT murasetomohiko protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT bayasula protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT ishidachiharu protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT katonao protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT nakamuratomoko protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT osukasatoko protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT takikawasachiko protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT gotomaki protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT kotanitomomi protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice AT kikkawafumitaka protectiveeffectsofmangafodipiragainstchemotherapyinducedovariandamageinmice |