Cargando…

A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrudinová, Martina, Žáková, Lenka, Marek, Aleš, Socha, Ondřej, Buděšínský, Miloš, Hubálek, Martin, Pícha, Jan, Macháčková, Kateřina, Jiráček, Jiří, Selicharová, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204900/
https://www.ncbi.nlm.nih.gov/pubmed/30213860
http://dx.doi.org/10.1074/jbc.RA118.004852
_version_ 1783366109753245696
author Chrudinová, Martina
Žáková, Lenka
Marek, Aleš
Socha, Ondřej
Buděšínský, Miloš
Hubálek, Martin
Pícha, Jan
Macháčková, Kateřina
Jiráček, Jiří
Selicharová, Irena
author_facet Chrudinová, Martina
Žáková, Lenka
Marek, Aleš
Socha, Ondřej
Buděšínský, Miloš
Hubálek, Martin
Pícha, Jan
Macháčková, Kateřina
Jiráček, Jiří
Selicharová, Irena
author_sort Chrudinová, Martina
collection PubMed
description Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-His(B24), Gly(B31), Tyr(B32)]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-His(B24), Gly(B31), Tyr(B32)]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-His(B24), Gly(B31), Tyr(B32)]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
format Online
Article
Text
id pubmed-6204900
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-62049002018-10-30 A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding Chrudinová, Martina Žáková, Lenka Marek, Aleš Socha, Ondřej Buděšínský, Miloš Hubálek, Martin Pícha, Jan Macháčková, Kateřina Jiráček, Jiří Selicharová, Irena J Biol Chem Protein Structure and Folding Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-His(B24), Gly(B31), Tyr(B32)]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-His(B24), Gly(B31), Tyr(B32)]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-His(B24), Gly(B31), Tyr(B32)]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin. American Society for Biochemistry and Molecular Biology 2018-10-26 2018-09-13 /pmc/articles/PMC6204900/ /pubmed/30213860 http://dx.doi.org/10.1074/jbc.RA118.004852 Text en © 2018 Chrudinová et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Protein Structure and Folding
Chrudinová, Martina
Žáková, Lenka
Marek, Aleš
Socha, Ondřej
Buděšínský, Miloš
Hubálek, Martin
Pícha, Jan
Macháčková, Kateřina
Jiráček, Jiří
Selicharová, Irena
A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title_full A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title_fullStr A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title_full_unstemmed A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title_short A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding
title_sort versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: structural implications for receptor binding
topic Protein Structure and Folding
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204900/
https://www.ncbi.nlm.nih.gov/pubmed/30213860
http://dx.doi.org/10.1074/jbc.RA118.004852
work_keys_str_mv AT chrudinovamartina aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT zakovalenka aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT marekales aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT sochaondrej aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT budesinskymilos aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT hubalekmartin aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT pichajan aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT machackovakaterina aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT jiracekjiri aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT selicharovairena aversatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT chrudinovamartina versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT zakovalenka versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT marekales versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT sochaondrej versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT budesinskymilos versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT hubalekmartin versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT pichajan versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT machackovakaterina versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT jiracekjiri versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding
AT selicharovairena versatileinsulinanalogwithhighpotencyforbothinsulinandinsulinlikegrowthfactor1receptorsstructuralimplicationsforreceptorbinding