Cargando…

Phase Synchronization Dynamics of Neural Network during Seizures

Epilepsy has been considered as a network-level disorder characterized by recurrent seizures, which result from network reorganization with evolution of synchronization. In this study, the brain networks were established by calculating phase synchronization based on electrocorticogram (ECoG) signals...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hao, Zhang, Puming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205102/
https://www.ncbi.nlm.nih.gov/pubmed/30410569
http://dx.doi.org/10.1155/2018/1354915
Descripción
Sumario:Epilepsy has been considered as a network-level disorder characterized by recurrent seizures, which result from network reorganization with evolution of synchronization. In this study, the brain networks were established by calculating phase synchronization based on electrocorticogram (ECoG) signals from eleven refractory epilepsy patients. Results showed that there was a significant increase of synchronization prior to seizure termination and no significant difference of the transitions of network states among the preseizure, seizure, and postseizure periods. Those results indicated that synchronization might participate in termination of seizures, and the network states transitions might not dominate the seizure evolution.