Cargando…
Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy
FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205168/ https://www.ncbi.nlm.nih.gov/pubmed/30410676 http://dx.doi.org/10.18632/oncotarget.26194 |
_version_ | 1783366157463453696 |
---|---|
author | Baida, Gleb Bhalla, Pankaj Yemelyanov, Alexander Stechschulte, Lance A. Shou, Weinian Readhead, Ben Dudley, Joel T. Sánchez, Edwin R. Budunova, Irina |
author_facet | Baida, Gleb Bhalla, Pankaj Yemelyanov, Alexander Stechschulte, Lance A. Shou, Weinian Readhead, Ben Dudley, Joel T. Sánchez, Edwin R. Budunova, Irina |
author_sort | Baida, Gleb |
collection | PubMed |
description | FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy. |
format | Online Article Text |
id | pubmed-6205168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-62051682018-11-08 Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy Baida, Gleb Bhalla, Pankaj Yemelyanov, Alexander Stechschulte, Lance A. Shou, Weinian Readhead, Ben Dudley, Joel T. Sánchez, Edwin R. Budunova, Irina Oncotarget Research Paper FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy. Impact Journals LLC 2018-10-05 /pmc/articles/PMC6205168/ /pubmed/30410676 http://dx.doi.org/10.18632/oncotarget.26194 Text en Copyright: © 2018 Baida et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Baida, Gleb Bhalla, Pankaj Yemelyanov, Alexander Stechschulte, Lance A. Shou, Weinian Readhead, Ben Dudley, Joel T. Sánchez, Edwin R. Budunova, Irina Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title | Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title_full | Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title_fullStr | Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title_full_unstemmed | Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title_short | Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy |
title_sort | deletion of the glucocorticoid receptor chaperone fkbp51 prevents glucocorticoid-induced skin atrophy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205168/ https://www.ncbi.nlm.nih.gov/pubmed/30410676 http://dx.doi.org/10.18632/oncotarget.26194 |
work_keys_str_mv | AT baidagleb deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT bhallapankaj deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT yemelyanovalexander deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT stechschultelancea deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT shouweinian deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT readheadben deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT dudleyjoelt deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT sanchezedwinr deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy AT budunovairina deletionoftheglucocorticoidreceptorchaperonefkbp51preventsglucocorticoidinducedskinatrophy |