Cargando…

H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells

The long non-coding RNA H19 is highly expressed in several cancers, and the functions of H19 vary among cancer cell types. Recently, we reported that H19 contributes to the metastasis of pancreatic ductal adenocarcinoma (PDAC) cells and that inhibition of H19 reduces metastasis in vivo. However, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sasaki, Norihiko, Toyoda, Masashi, Yoshimura, Hisashi, Matsuda, Yoko, Arai, Tomio, Takubo, Kaiyo, Aida, Junko, Ishiwata, Toshiyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205177/
https://www.ncbi.nlm.nih.gov/pubmed/30410672
http://dx.doi.org/10.18632/oncotarget.26176
_version_ 1783366160237985792
author Sasaki, Norihiko
Toyoda, Masashi
Yoshimura, Hisashi
Matsuda, Yoko
Arai, Tomio
Takubo, Kaiyo
Aida, Junko
Ishiwata, Toshiyuki
author_facet Sasaki, Norihiko
Toyoda, Masashi
Yoshimura, Hisashi
Matsuda, Yoko
Arai, Tomio
Takubo, Kaiyo
Aida, Junko
Ishiwata, Toshiyuki
author_sort Sasaki, Norihiko
collection PubMed
description The long non-coding RNA H19 is highly expressed in several cancers, and the functions of H19 vary among cancer cell types. Recently, we reported that H19 contributes to the metastasis of pancreatic ductal adenocarcinoma (PDAC) cells and that inhibition of H19 reduces metastasis in vivo. However, the molecular mechanisms underlying the metastasis-promoting role of H19 in PDAC cells remain poorly elucidated. In this study, we clarified the mechanisms by which H19 regulates PDAC metastasis, with a focus on cancer stem cells (CSCs), by using H19-overexpressing and knockdown PDAC cells. Whereas the sphere-formation and invasion abilities of PDAC cells depended on H19 expression levels, other CSC characteristics of the cells, including stemness-marker expression and anticancer-drug resistance, were unaffected by H19 levels. Furthermore, metalloproteinase activity, a key mediator of invasion, was also independent of H19 expression. By contrast, H19 promoted cell adhesion through regulation of integrin and CD24 expression. Notably, the increased adhesion of H19-overexpressing cells was blocked by an anti-β1-integrin antibody, and this resulted in the inhibition of sphere formation and invasion. Thus, H19 plays critical roles in the CSC self-renewal and cell adhesion of PDAC that lead to invasion and metastasis. Our findings suggest that H19 represents a novel therapeutic target for the metastasis of pancreatic cancer.
format Online
Article
Text
id pubmed-6205177
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-62051772018-11-08 H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells Sasaki, Norihiko Toyoda, Masashi Yoshimura, Hisashi Matsuda, Yoko Arai, Tomio Takubo, Kaiyo Aida, Junko Ishiwata, Toshiyuki Oncotarget Research Paper The long non-coding RNA H19 is highly expressed in several cancers, and the functions of H19 vary among cancer cell types. Recently, we reported that H19 contributes to the metastasis of pancreatic ductal adenocarcinoma (PDAC) cells and that inhibition of H19 reduces metastasis in vivo. However, the molecular mechanisms underlying the metastasis-promoting role of H19 in PDAC cells remain poorly elucidated. In this study, we clarified the mechanisms by which H19 regulates PDAC metastasis, with a focus on cancer stem cells (CSCs), by using H19-overexpressing and knockdown PDAC cells. Whereas the sphere-formation and invasion abilities of PDAC cells depended on H19 expression levels, other CSC characteristics of the cells, including stemness-marker expression and anticancer-drug resistance, were unaffected by H19 levels. Furthermore, metalloproteinase activity, a key mediator of invasion, was also independent of H19 expression. By contrast, H19 promoted cell adhesion through regulation of integrin and CD24 expression. Notably, the increased adhesion of H19-overexpressing cells was blocked by an anti-β1-integrin antibody, and this resulted in the inhibition of sphere formation and invasion. Thus, H19 plays critical roles in the CSC self-renewal and cell adhesion of PDAC that lead to invasion and metastasis. Our findings suggest that H19 represents a novel therapeutic target for the metastasis of pancreatic cancer. Impact Journals LLC 2018-10-05 /pmc/articles/PMC6205177/ /pubmed/30410672 http://dx.doi.org/10.18632/oncotarget.26176 Text en Copyright: © 2018 Sasaki et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Research Paper
Sasaki, Norihiko
Toyoda, Masashi
Yoshimura, Hisashi
Matsuda, Yoko
Arai, Tomio
Takubo, Kaiyo
Aida, Junko
Ishiwata, Toshiyuki
H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title_full H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title_fullStr H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title_full_unstemmed H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title_short H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells
title_sort h19 long non-coding rna contributes to sphere formation and invasion through regulation of cd24 and integrin expression in pancreatic cancer cells
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205177/
https://www.ncbi.nlm.nih.gov/pubmed/30410672
http://dx.doi.org/10.18632/oncotarget.26176
work_keys_str_mv AT sasakinorihiko h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT toyodamasashi h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT yoshimurahisashi h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT matsudayoko h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT araitomio h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT takubokaiyo h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT aidajunko h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells
AT ishiwatatoshiyuki h19longnoncodingrnacontributestosphereformationandinvasionthroughregulationofcd24andintegrinexpressioninpancreaticcancercells