Cargando…

Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy

OBJECTIVE: To provide a multi-atlas framework for automated hippocampus segmentation in temporal lobe epilepsy (TLE) and clinically validate the results with respect to surgical lateralization and post-surgical outcome. METHODS: We retrospectively identified 47 TLE patients who underwent surgical re...

Descripción completa

Detalles Bibliográficos
Autores principales: Hadar, Peter N., Kini, Lohith G., Coto, Carlos, Piskin, Virginie, Callans, Lauren E., Chen, Stephanie H., Stein, Joel M., Das, Sandhitsu R., Yushkevich, Paul A., Davis, Kathryn A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205355/
https://www.ncbi.nlm.nih.gov/pubmed/30380521
http://dx.doi.org/10.1016/j.nicl.2018.09.032
_version_ 1783366181515689984
author Hadar, Peter N.
Kini, Lohith G.
Coto, Carlos
Piskin, Virginie
Callans, Lauren E.
Chen, Stephanie H.
Stein, Joel M.
Das, Sandhitsu R.
Yushkevich, Paul A.
Davis, Kathryn A.
author_facet Hadar, Peter N.
Kini, Lohith G.
Coto, Carlos
Piskin, Virginie
Callans, Lauren E.
Chen, Stephanie H.
Stein, Joel M.
Das, Sandhitsu R.
Yushkevich, Paul A.
Davis, Kathryn A.
author_sort Hadar, Peter N.
collection PubMed
description OBJECTIVE: To provide a multi-atlas framework for automated hippocampus segmentation in temporal lobe epilepsy (TLE) and clinically validate the results with respect to surgical lateralization and post-surgical outcome. METHODS: We retrospectively identified 47 TLE patients who underwent surgical resection and 12 healthy controls. T1-weighted 3 T MRI scans were acquired for all subjects, and patients were identified by a neuroradiologist with regards to lateralization and degree of hippocampal sclerosis (HS). Automated segmentation was implemented through the Joint Label Fusion/Corrective Learning (JLF/CL) method. Gold standard lateralization was determined from the surgically resected side in Engel I (seizure-free) patients at the two-year timepoint. ROC curves were used to identify appropriate thresholds for hippocampal asymmetry ratios, which were then used to analyze JLF/CL lateralization. RESULTS: The optimal template atlas based on subject images with varying appearances, from normal-appearing to severe HS, was demonstrated to be composed entirely of normal-appearing subjects, with good agreement between automated and manual segmentations. In applying this atlas to 26 surgically resected seizure-free patients at a two-year timepoint, JLF/CL lateralized seizure onset 92% of the time. In comparison, neuroradiology reads lateralized 65% of patients, but correctly lateralized seizure onset in these patients 100% of the time. When compared to lateralized neuroradiology reads, JLF/CL was in agreement and correctly lateralized all 17 patients. When compared to nonlateralized radiology reads, JLF/CL correctly lateralized 78% of the nine patients. SIGNIFICANCE: While a neuroradiologist's interpretation of MR imaging is a key, albeit imperfect, diagnostic tool for seizure localization in medically-refractory TLE patients, automated hippocampal segmentation may provide more efficient and accurate epileptic foci localization. These promising findings demonstrate the clinical utility of automated segmentation in the TLE MR imaging pipeline prior to surgical resection, and suggest that further investigation into JLF/CL-assisted MRI reading could improve clinical outcomes. Our JLF/CL software is publicly available at https://www.nitrc.org/projects/ashs/.
format Online
Article
Text
id pubmed-6205355
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-62053552018-11-07 Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy Hadar, Peter N. Kini, Lohith G. Coto, Carlos Piskin, Virginie Callans, Lauren E. Chen, Stephanie H. Stein, Joel M. Das, Sandhitsu R. Yushkevich, Paul A. Davis, Kathryn A. Neuroimage Clin Regular Article OBJECTIVE: To provide a multi-atlas framework for automated hippocampus segmentation in temporal lobe epilepsy (TLE) and clinically validate the results with respect to surgical lateralization and post-surgical outcome. METHODS: We retrospectively identified 47 TLE patients who underwent surgical resection and 12 healthy controls. T1-weighted 3 T MRI scans were acquired for all subjects, and patients were identified by a neuroradiologist with regards to lateralization and degree of hippocampal sclerosis (HS). Automated segmentation was implemented through the Joint Label Fusion/Corrective Learning (JLF/CL) method. Gold standard lateralization was determined from the surgically resected side in Engel I (seizure-free) patients at the two-year timepoint. ROC curves were used to identify appropriate thresholds for hippocampal asymmetry ratios, which were then used to analyze JLF/CL lateralization. RESULTS: The optimal template atlas based on subject images with varying appearances, from normal-appearing to severe HS, was demonstrated to be composed entirely of normal-appearing subjects, with good agreement between automated and manual segmentations. In applying this atlas to 26 surgically resected seizure-free patients at a two-year timepoint, JLF/CL lateralized seizure onset 92% of the time. In comparison, neuroradiology reads lateralized 65% of patients, but correctly lateralized seizure onset in these patients 100% of the time. When compared to lateralized neuroradiology reads, JLF/CL was in agreement and correctly lateralized all 17 patients. When compared to nonlateralized radiology reads, JLF/CL correctly lateralized 78% of the nine patients. SIGNIFICANCE: While a neuroradiologist's interpretation of MR imaging is a key, albeit imperfect, diagnostic tool for seizure localization in medically-refractory TLE patients, automated hippocampal segmentation may provide more efficient and accurate epileptic foci localization. These promising findings demonstrate the clinical utility of automated segmentation in the TLE MR imaging pipeline prior to surgical resection, and suggest that further investigation into JLF/CL-assisted MRI reading could improve clinical outcomes. Our JLF/CL software is publicly available at https://www.nitrc.org/projects/ashs/. Elsevier 2018-10-10 /pmc/articles/PMC6205355/ /pubmed/30380521 http://dx.doi.org/10.1016/j.nicl.2018.09.032 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Hadar, Peter N.
Kini, Lohith G.
Coto, Carlos
Piskin, Virginie
Callans, Lauren E.
Chen, Stephanie H.
Stein, Joel M.
Das, Sandhitsu R.
Yushkevich, Paul A.
Davis, Kathryn A.
Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title_full Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title_fullStr Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title_full_unstemmed Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title_short Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
title_sort clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205355/
https://www.ncbi.nlm.nih.gov/pubmed/30380521
http://dx.doi.org/10.1016/j.nicl.2018.09.032
work_keys_str_mv AT hadarpetern clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT kinilohithg clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT cotocarlos clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT piskinvirginie clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT callanslaurene clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT chenstephanieh clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT steinjoelm clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT dassandhitsur clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT yushkevichpaula clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy
AT daviskathryna clinicalvalidationofautomatedhippocampalsegmentationintemporallobeepilepsy