Cargando…

Molecular analysis of the dual targeting of the epidermal growth factor receptor and the O(6)-methylguanine-DNA methyltransferase with a double arm hybrid molecule

Disordered expression of the epidermal growth factor receptor (EGFR) has been associated with induction of DNA repair genes (e.g. XRCC1, ERCC1) and resistance to radiation and genotoxic drugs. However, our previous work showed that EGFR inhibition did not affect O(6)-methylguanine-DNA methyltransfer...

Descripción completa

Detalles Bibliográficos
Autores principales: Rupp, Martin, Mouhri, Zhor Senhaji, Williams, Christopher, Jean-Claude, Bertrand J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205551/
https://www.ncbi.nlm.nih.gov/pubmed/30416678
http://dx.doi.org/10.18632/oncotarget.25120
Descripción
Sumario:Disordered expression of the epidermal growth factor receptor (EGFR) has been associated with induction of DNA repair genes (e.g. XRCC1, ERCC1) and resistance to radiation and genotoxic drugs. However, our previous work showed that EGFR inhibition did not affect O(6)-methylguanine-DNA methyltransferase (MGMT)-mediated resistance. In order to block uncoupled events associated with EGFR and MGMT, we designed MR30, a single molecule termed “combi-molecule” that contains a quinazoline arm targeted to EGFR and an O(6)-benzylguanine (O(6)-BG) moiety to block MGMT. Molecular analysis of the mechanism of action of its two arms showed that: (a) it could block EGFR phosphorylation, (b) down-regulate the RAF-MAPK and the PI3K-AKT pathways, and (c) covalently modify MGMT through S-benzylation, as confirmed by MALDI analysis of a direct binding assay with isolated MGMT, (d) it induced a dose-dependent down-regulation of MGMT in lung and melanoma cells. The pleiotropic mechanism of action of MR30 culminated into strong growth inhibition (IC(50): 0.018-6.02 μM), with superior activity when compared with an equimolar combination of gefitinib (a clinical EGFR inhibitor) and O(6)-BG (a known MGMT inhibitor). Pulse exposure experiments were required to attenuate the contribution of EGFR inhibition to the strong potency of MR30, thereby allowing to achieve the dose level required to sensitize cells to temozolomide (TMZ). Indeed, MR30 significantly sensitized EGFR-MGMT co-expressing cells to TMZ (p<0.05-0.0001). The results in toto suggest that MR30 is the first prototype of agents that may be used against tumours addicted to EGFR and to sensitize resistant tumours co-expressing EGFR and MGMT to TMZ.