Cargando…

Lightwave valleytronics in a monolayer of tungsten diselenide

As conventional electronics is approaching its ultimate limits1, nanoscience has urgently sought for novel fast control concepts of electrons at the fundamental quantum level2. Lightwave electronics3 – the foundation of attosecond science4 – utilizes the oscillating carrier wave of intense light pul...

Descripción completa

Detalles Bibliográficos
Autores principales: Langer, F., Schmid, C. P., Schlauderer, S., Gmitra, M., Fabian, J., Nagler, P., Schüller, C., Korn, T., Hawkins, P. G., Steiner, J. T., Huttner, U., Koch, S. W., Kira, M., Huber, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205603/
https://www.ncbi.nlm.nih.gov/pubmed/29720633
http://dx.doi.org/10.1038/s41586-018-0013-6
_version_ 1783366211400105984
author Langer, F.
Schmid, C. P.
Schlauderer, S.
Gmitra, M.
Fabian, J.
Nagler, P.
Schüller, C.
Korn, T.
Hawkins, P. G.
Steiner, J. T.
Huttner, U.
Koch, S. W.
Kira, M.
Huber, R.
author_facet Langer, F.
Schmid, C. P.
Schlauderer, S.
Gmitra, M.
Fabian, J.
Nagler, P.
Schüller, C.
Korn, T.
Hawkins, P. G.
Steiner, J. T.
Huttner, U.
Koch, S. W.
Kira, M.
Huber, R.
author_sort Langer, F.
collection PubMed
description As conventional electronics is approaching its ultimate limits1, nanoscience has urgently sought for novel fast control concepts of electrons at the fundamental quantum level2. Lightwave electronics3 – the foundation of attosecond science4 – utilizes the oscillating carrier wave of intense light pulses to control the translational motion of the electron’s charge faster than a single cycle of light5–15. Despite being particularly promising information carriers, the internal quantum attributes of spin16 and valley pseudospin17–19 have not been switchable on the subcycle scale20–21. Here we demonstrate lightwave-driven changes of the valley pseudospin and introduce distinct signatures in the optical read out. Photogenerated electron–hole pairs in a monolayer of tungsten diselenide are accelerated and collided by a strong lightwave. The emergence of high odd-order sidebands and anomalous changes in their polarization direction directly attest to the ultrafast pseudospin dynamics. Quantitative computations combining density-functional theory with a non-perturbative quantum many-body approach assign the polarization of the sidebands to a lightwave-induced change of the valley pseudospin and confirm that the process is coherent and adiabatic. Our work opens the door to systematic valleytronic logic at optical clock rates.
format Online
Article
Text
id pubmed-6205603
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-62056032018-11-02 Lightwave valleytronics in a monolayer of tungsten diselenide Langer, F. Schmid, C. P. Schlauderer, S. Gmitra, M. Fabian, J. Nagler, P. Schüller, C. Korn, T. Hawkins, P. G. Steiner, J. T. Huttner, U. Koch, S. W. Kira, M. Huber, R. Nature Article As conventional electronics is approaching its ultimate limits1, nanoscience has urgently sought for novel fast control concepts of electrons at the fundamental quantum level2. Lightwave electronics3 – the foundation of attosecond science4 – utilizes the oscillating carrier wave of intense light pulses to control the translational motion of the electron’s charge faster than a single cycle of light5–15. Despite being particularly promising information carriers, the internal quantum attributes of spin16 and valley pseudospin17–19 have not been switchable on the subcycle scale20–21. Here we demonstrate lightwave-driven changes of the valley pseudospin and introduce distinct signatures in the optical read out. Photogenerated electron–hole pairs in a monolayer of tungsten diselenide are accelerated and collided by a strong lightwave. The emergence of high odd-order sidebands and anomalous changes in their polarization direction directly attest to the ultrafast pseudospin dynamics. Quantitative computations combining density-functional theory with a non-perturbative quantum many-body approach assign the polarization of the sidebands to a lightwave-induced change of the valley pseudospin and confirm that the process is coherent and adiabatic. Our work opens the door to systematic valleytronic logic at optical clock rates. 2018-05-02 2018-05 /pmc/articles/PMC6205603/ /pubmed/29720633 http://dx.doi.org/10.1038/s41586-018-0013-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Langer, F.
Schmid, C. P.
Schlauderer, S.
Gmitra, M.
Fabian, J.
Nagler, P.
Schüller, C.
Korn, T.
Hawkins, P. G.
Steiner, J. T.
Huttner, U.
Koch, S. W.
Kira, M.
Huber, R.
Lightwave valleytronics in a monolayer of tungsten diselenide
title Lightwave valleytronics in a monolayer of tungsten diselenide
title_full Lightwave valleytronics in a monolayer of tungsten diselenide
title_fullStr Lightwave valleytronics in a monolayer of tungsten diselenide
title_full_unstemmed Lightwave valleytronics in a monolayer of tungsten diselenide
title_short Lightwave valleytronics in a monolayer of tungsten diselenide
title_sort lightwave valleytronics in a monolayer of tungsten diselenide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205603/
https://www.ncbi.nlm.nih.gov/pubmed/29720633
http://dx.doi.org/10.1038/s41586-018-0013-6
work_keys_str_mv AT langerf lightwavevalleytronicsinamonolayeroftungstendiselenide
AT schmidcp lightwavevalleytronicsinamonolayeroftungstendiselenide
AT schlauderers lightwavevalleytronicsinamonolayeroftungstendiselenide
AT gmitram lightwavevalleytronicsinamonolayeroftungstendiselenide
AT fabianj lightwavevalleytronicsinamonolayeroftungstendiselenide
AT naglerp lightwavevalleytronicsinamonolayeroftungstendiselenide
AT schullerc lightwavevalleytronicsinamonolayeroftungstendiselenide
AT kornt lightwavevalleytronicsinamonolayeroftungstendiselenide
AT hawkinspg lightwavevalleytronicsinamonolayeroftungstendiselenide
AT steinerjt lightwavevalleytronicsinamonolayeroftungstendiselenide
AT huttneru lightwavevalleytronicsinamonolayeroftungstendiselenide
AT kochsw lightwavevalleytronicsinamonolayeroftungstendiselenide
AT kiram lightwavevalleytronicsinamonolayeroftungstendiselenide
AT huberr lightwavevalleytronicsinamonolayeroftungstendiselenide