Cargando…
Improvement of exertional dyspnea and breathing pattern of inspiration to expiration after bronchial thermoplasty
BACKGROUND: Bronchial thermoplasty (BT) is a bronchoscopic treatment that can ameliorate the symptoms of severe asthma. However, little is known about the mechanism by which BT improves exertional dyspnea without significantly changing the resting pulmonary function in asthmatics. To understand the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205802/ https://www.ncbi.nlm.nih.gov/pubmed/30386387 http://dx.doi.org/10.1186/s13223-018-0276-3 |
Sumario: | BACKGROUND: Bronchial thermoplasty (BT) is a bronchoscopic treatment that can ameliorate the symptoms of severe asthma. However, little is known about the mechanism by which BT improves exertional dyspnea without significantly changing the resting pulmonary function in asthmatics. To understand the mechanism, cardiopulmonary variables were investigated using cardiopulmonary exercise testing (CPET) in a patient with severe asthma before and after BT. CASE PRESENTATION: A 57-year-old Japanese man visited our hospital for consultation of the intractable asthma, which we managed with three treatment sessions of BT. Comparison of the findings pre-BT and at 1 year after BT demonstrated that (1) the resting tests for respiration showed no improvement in forced expiratory volume in 1 s, but the forced oscillation technique showed decreases in both inhalation and exhalation respiratory resistance values, and (2) the CPET results showed (i) improvement in exertional dyspnea, exercise endurance, and arterial oxygen saturation at the end of exercise; (ii) that the expiratory tidal volume exceeded the inspiratory tidal volume during exercise, which implied that a sufficient exhalation enabled longer inspiratory time and adequate oxygen absorption; and (iii) that an increase in respiratory frequency could be prevented throughout exercise. CONCLUSIONS: This case report described a novel mechanism of BT in improving exertional dyspnea and exercise duration, which was brought about by ventilatory improvements related to the breathing pattern of inspiration to expiration. |
---|