Cargando…

Comparative cochlear transcriptomics of echolocating bats provides new insights into different nervous activities of CF bat species

The molecular mechanisms used by echolocating bats to deal with different ultrasonic signals remain to be revealed. Here, we utilised RNA-Seq data to conduct comparative cochlear transcriptomics to assess the variation of gene expression among bats with three types of echolocation: constant-frequenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hui, Zhao, Hanbo, Huang, Xiaobin, Sun, Keping, Feng, Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206067/
https://www.ncbi.nlm.nih.gov/pubmed/30374045
http://dx.doi.org/10.1038/s41598-018-34333-7
Descripción
Sumario:The molecular mechanisms used by echolocating bats to deal with different ultrasonic signals remain to be revealed. Here, we utilised RNA-Seq data to conduct comparative cochlear transcriptomics to assess the variation of gene expression among bats with three types of echolocation: constant-frequency (CF) bats, frequency-modulated (FM) bats and click bats. Our results suggest larger differences in gene expression between CF and click bats than between CF and FM bats and small differences between FM and click bats. We identified 426 and 1,504 differentially expressed genes (DEGs) by the different methods as functionally important for CF bats, in that they showed consistent upregulation in the cochlea of two CF bats, relative to the levels in click and FM bats. Subsequently, downstream GO and KEGG enrichment analyses indicated that both the 426 and 1,504 gene sets were associated with changes in nervous activities in the cochleae of CF bats. In addition, another set of 1,764 DEGs were identified to have crucial hearing related physiological functions for laryngeally echolocating bats. Our study provides a comprehensive overview of the genetic basis of differences among echolocating bats, revealing different nervous system activities during auditory perception in the cochlea particularly in CF bats.