Cargando…
Chemical shifts in molecular solids by machine learning
Due to their strong dependence on local atonic environments, NMR chemical shifts are among the most powerful tools for strucutre elucidation of powdered solids or amorphous materials. Unfortunately, using them for structure determination depends on the ability to calculate them, which comes at the...
Autores principales: | Paruzzo, Federico M., Hofstetter, Albert, Musil, Félix, De, Sandip, Ceriotti, Michele, Emsley, Lyndon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206069/ https://www.ncbi.nlm.nih.gov/pubmed/30374021 http://dx.doi.org/10.1038/s41467-018-06972-x |
Ejemplares similares
-
A Machine Learning Model of Chemical Shifts for Chemically
and Structurally Diverse Molecular Solids
por: Cordova, Manuel, et al.
Publicado: (2022) -
Rapid Structure Determination of Molecular Solids
Using Chemical Shifts Directed by Unambiguous Prior Constraints
por: Hofstetter, Albert, et al.
Publicado: (2019) -
Bayesian probabilistic assignment of chemical shifts in organic solids
por: Cordova, Manuel, et al.
Publicado: (2021) -
De Novo Crystal Structure Determination
from Machine Learned Chemical Shifts
por: Balodis, Martins, et al.
Publicado: (2022) -
Chemical
Shift-Dependent Interaction Maps in Molecular
Solids
por: Cordova, Manuel, et al.
Publicado: (2023)