Cargando…
Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance
AIM: To determine the influence of the construction design over the biological component’s performance in an experimental bio-artificial liver (BAL) device. METHODS: Two BAL models for liver microorgans (LMOs) were constructed. First, we constructed a cylindrical BAL and tested it without the biolog...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206149/ https://www.ncbi.nlm.nih.gov/pubmed/30386465 http://dx.doi.org/10.4254/wjh.v10.i10.719 |
_version_ | 1783366312393703424 |
---|---|
author | Pizarro, María Dolores Mamprin, María Eugenia Daurelio, Lucas Damián Rodriguez, Joaquín Valentín Mediavilla, María Gabriela |
author_facet | Pizarro, María Dolores Mamprin, María Eugenia Daurelio, Lucas Damián Rodriguez, Joaquín Valentín Mediavilla, María Gabriela |
author_sort | Pizarro, María Dolores |
collection | PubMed |
description | AIM: To determine the influence of the construction design over the biological component’s performance in an experimental bio-artificial liver (BAL) device. METHODS: Two BAL models for liver microorgans (LMOs) were constructed. First, we constructed a cylindrical BAL and tested it without the biological component to establish its correct functioning. Samples of blood and biological compartment (BC) fluid were taken after 0, 60, and 120 min of perfusion. Osmolality, hematocrit, ammonia and glucose concentrations, lactate dehydrogenase (LDH) release (as a LMO viability parameter), and oxygen consumption and ammonia metabolizing capacity (as LMO functionality parameters) were determined. CPSI and OTC gene expression and function were measured. The second BAL, a “flat bottom” model, was constructed using a 25 cm(2) culture flask while maintaining all other components between the models. The BC of both BALs had the same capacity (approximately 50 cm(3)) and both were manipulated with the same perfusion system. The performances of the two BALs were compared to show the influence of architecture. RESULTS: The cylindrical BAL showed a good exchange of fluids and metabolites between blood and the BC, reflected by the matching of osmolalities, and glucose and ammonia concentration ratios after 120 min of perfusion. No hemoconcentration was detected, the hematocrit levels remained stable during the whole study, and the minimal percentage of hemolysis (0.65% ± 0.10%) observed was due to the action of the peristaltic pump. When LMOs were used as biological component of this BAL they showed similar values to the ones obtained in a Normothermic Reoxygenation System (NRS) for almost all the parameters assayed. After 120 min, the results obtained were: LDH release (%): 14.7 ± 3.1 in the BAL and 15.5 ± 3.2 in the NRS (n = 6); oxygen consumption (μmol/min·g wet tissue): 1.16 ± 0.21 in the BAL and 0.84 ± 0.15 in the NRS (n = 6); relative expression of Cps1 and Otc: 0.63 ± 0.12 and 0.67 ± 0.20, respectively, in the BAL, and 0.86 ± 0.10 and 0.82 ± 0.07, respectively, in the NRS (n = 3); enzymatic activity of CPSI and OTC (U/g wet tissue): 3.03 ± 0.86 and 222.0 ± 23.5, respectively, in the BAL, and 3.12 ± 0.73 and 228.8 ± 32.8, respectively, in the NRS (n = 3). In spite of these similarities, LMOs as a biological component of the cylindrical BAL were not able to detoxify ammonia at a significant level (not detected vs 35.1% ± 7.0% of the initial 1 mM NH(4)(+) dose in NRS, n = 6). Therefore, we built a second BAL with an entirely different design that offers a flat base BC. When LMOs were placed in this “flat bottom” device they were able to detoxify 49.3% ± 8.8% of the initial ammonia overload after 120 min of perfusion (n = 6), with a detoxification capacity of 13.2 ± 2.2 μmol/g wet tissue. CONCLUSION: In this work, we demonstrate the importance of adapting the BAL architecture to the biological component characteristics to obtain an adequate BAL performance. |
format | Online Article Text |
id | pubmed-6206149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Baishideng Publishing Group Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-62061492018-10-31 Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance Pizarro, María Dolores Mamprin, María Eugenia Daurelio, Lucas Damián Rodriguez, Joaquín Valentín Mediavilla, María Gabriela World J Hepatol Basic Study AIM: To determine the influence of the construction design over the biological component’s performance in an experimental bio-artificial liver (BAL) device. METHODS: Two BAL models for liver microorgans (LMOs) were constructed. First, we constructed a cylindrical BAL and tested it without the biological component to establish its correct functioning. Samples of blood and biological compartment (BC) fluid were taken after 0, 60, and 120 min of perfusion. Osmolality, hematocrit, ammonia and glucose concentrations, lactate dehydrogenase (LDH) release (as a LMO viability parameter), and oxygen consumption and ammonia metabolizing capacity (as LMO functionality parameters) were determined. CPSI and OTC gene expression and function were measured. The second BAL, a “flat bottom” model, was constructed using a 25 cm(2) culture flask while maintaining all other components between the models. The BC of both BALs had the same capacity (approximately 50 cm(3)) and both were manipulated with the same perfusion system. The performances of the two BALs were compared to show the influence of architecture. RESULTS: The cylindrical BAL showed a good exchange of fluids and metabolites between blood and the BC, reflected by the matching of osmolalities, and glucose and ammonia concentration ratios after 120 min of perfusion. No hemoconcentration was detected, the hematocrit levels remained stable during the whole study, and the minimal percentage of hemolysis (0.65% ± 0.10%) observed was due to the action of the peristaltic pump. When LMOs were used as biological component of this BAL they showed similar values to the ones obtained in a Normothermic Reoxygenation System (NRS) for almost all the parameters assayed. After 120 min, the results obtained were: LDH release (%): 14.7 ± 3.1 in the BAL and 15.5 ± 3.2 in the NRS (n = 6); oxygen consumption (μmol/min·g wet tissue): 1.16 ± 0.21 in the BAL and 0.84 ± 0.15 in the NRS (n = 6); relative expression of Cps1 and Otc: 0.63 ± 0.12 and 0.67 ± 0.20, respectively, in the BAL, and 0.86 ± 0.10 and 0.82 ± 0.07, respectively, in the NRS (n = 3); enzymatic activity of CPSI and OTC (U/g wet tissue): 3.03 ± 0.86 and 222.0 ± 23.5, respectively, in the BAL, and 3.12 ± 0.73 and 228.8 ± 32.8, respectively, in the NRS (n = 3). In spite of these similarities, LMOs as a biological component of the cylindrical BAL were not able to detoxify ammonia at a significant level (not detected vs 35.1% ± 7.0% of the initial 1 mM NH(4)(+) dose in NRS, n = 6). Therefore, we built a second BAL with an entirely different design that offers a flat base BC. When LMOs were placed in this “flat bottom” device they were able to detoxify 49.3% ± 8.8% of the initial ammonia overload after 120 min of perfusion (n = 6), with a detoxification capacity of 13.2 ± 2.2 μmol/g wet tissue. CONCLUSION: In this work, we demonstrate the importance of adapting the BAL architecture to the biological component characteristics to obtain an adequate BAL performance. Baishideng Publishing Group Inc 2018-10-27 2018-10-27 /pmc/articles/PMC6206149/ /pubmed/30386465 http://dx.doi.org/10.4254/wjh.v10.i10.719 Text en ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved. http://creativecommons.org/licenses/by-nc/4.0/ This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. |
spellingShingle | Basic Study Pizarro, María Dolores Mamprin, María Eugenia Daurelio, Lucas Damián Rodriguez, Joaquín Valentín Mediavilla, María Gabriela Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title | Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title_full | Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title_fullStr | Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title_full_unstemmed | Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title_short | Experimental bio-artificial liver: Importance of the architectural design on ammonia detoxification performance |
title_sort | experimental bio-artificial liver: importance of the architectural design on ammonia detoxification performance |
topic | Basic Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206149/ https://www.ncbi.nlm.nih.gov/pubmed/30386465 http://dx.doi.org/10.4254/wjh.v10.i10.719 |
work_keys_str_mv | AT pizarromariadolores experimentalbioartificialliverimportanceofthearchitecturaldesignonammoniadetoxificationperformance AT mamprinmariaeugenia experimentalbioartificialliverimportanceofthearchitecturaldesignonammoniadetoxificationperformance AT daureliolucasdamian experimentalbioartificialliverimportanceofthearchitecturaldesignonammoniadetoxificationperformance AT rodriguezjoaquinvalentin experimentalbioartificialliverimportanceofthearchitecturaldesignonammoniadetoxificationperformance AT mediavillamariagabriela experimentalbioartificialliverimportanceofthearchitecturaldesignonammoniadetoxificationperformance |