Cargando…
Long‐lasting effects of logging on beetles in hollow oaks
There is growing evidence that biodiversity is important for ecosystem functions. Thus, identification of habitat requirements essential for current species richness and abundance to persist is crucial. Hollow oaks (Quercus spp.) are biodiversity hot spots for deadwood‐dependent insect species, and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206182/ https://www.ncbi.nlm.nih.gov/pubmed/30397452 http://dx.doi.org/10.1002/ece3.4486 |
Sumario: | There is growing evidence that biodiversity is important for ecosystem functions. Thus, identification of habitat requirements essential for current species richness and abundance to persist is crucial. Hollow oaks (Quercus spp.) are biodiversity hot spots for deadwood‐dependent insect species, and the main objective of this paper was to test the effect of habitat history and current habitat distribution at various spatial scales on the associated beetle community. We used a gradient spanning 40 km from the coast to inland areas reflecting historical logging intensity (later and lower intensities inland) through 500 years in Southern Norway, to investigate whether the historical variation in oak density is influencing the structure of beetle communities in hollow oaks today. We trapped beetles in 32 hollow oaks along this gradient in forested and seminatural landscapes over two summers. We found higher species richness and total abundance inland consistent with our expectation based on historic logging intensity. Scale‐specific environmental variables also affected the response; beetle abundances were controlled by local conditions, whereas beetle species richness responded to habitat on the landscape scale. This indicates that long time continuity as well as large areas of favorable habitat is necessary to maintain beetle species richness through time in these highly long‐lasting structures. |
---|