Cargando…

Hydroxysafflor Yellow A Shows Protection against PPARγ Inactivation in Nitrosative Neurons

Peroxynitrite-mediated nitrosative stress in the brain has been associated with various neurodegenerative disorders. Recent evidence highlights peroxisome proliferator-activated receptor γ (PPARγ) as a critical neuroprotective factor in neurodegenerative diseases. Here, we observed the effect of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Li, Xu, Yan-Wei, Han, Jing, Xiao, Chen, Cao, Shan-Shan, Liang, Hao, Cheng, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206554/
https://www.ncbi.nlm.nih.gov/pubmed/30410641
http://dx.doi.org/10.1155/2018/9101740
Descripción
Sumario:Peroxynitrite-mediated nitrosative stress in the brain has been associated with various neurodegenerative disorders. Recent evidence highlights peroxisome proliferator-activated receptor γ (PPARγ) as a critical neuroprotective factor in neurodegenerative diseases. Here, we observed the effect of the herb hydroxysafflor yellow A (HSYA) during nitrosative stress in neurons and investigated the mechanism based on PPARγ protection. We found that a single exposure of primary neurons to peroxynitrite donor SIN-1 caused neuronal injury, which was accompanied by the increase of PPARγ nitration status and lack of activation of the receptor, as measured by PPARγ DNA-binding activity, by agonist (15d-PGJ2 or rosiglitazone) stimulation. The crucial role of PPARγ in neuronal defense against nitrosative stress was verified by showing that pretreatment with 15d-PGJ2 or rosiglitazone attenuated SIN-1-induced neuronal injury but pretreatment with GW9662, a PPARγ antagonist, aggravated SIN-1-induced neuronal injury. The addition of HSYA not only inhibited SIN-1-induced neuronal damage but prevented PPARγ nitrative modification and resumed PPARγ activity stimulated by either 15d-PGJ2 or rosiglitazone. Furthermore, HSYA also showed the ability to rescue the neuroprotective effect of 15d-PGJ2 or rosiglitazone when the agonists were coincubated with SIN-1. Finally, in vivo experiments demonstrated that the administration of HSYA also efficiently blocked PPARγ nitration and loss of activity in the SIN-1-injected hippocampus and reversed the increased neuronal susceptibility which was supported by the inhibition of Bcl-2 protein downregulation induced by SIN-1. The results suggest that HSYA protects neurons from nitrosative stress through keeping PPARγ as a functional receptor, allowing a more effective activation of this neuroprotective factor by the endogenous or exogenous agonist. Our findings provide new clues in understanding the role of the neuroprotective potential of the herbal HSYA.