Cargando…
Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro
Bone homeostasis destruction is triggered by the uncontrolled activity of osteoblasts and osteoclasts. Targeting both the regulation of bone formation and resorption is a promising strategy for treating bone disorders. Cordycepin is a major component of Chinese caterpillar fungus Cordyceps militaris...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206560/ https://www.ncbi.nlm.nih.gov/pubmed/30410556 http://dx.doi.org/10.1155/2018/5892957 |
_version_ | 1783366371507175424 |
---|---|
author | Yu, Su-Bin Kim, Hye-Jin Kang, Hae-Mi Park, Bong-Soo Lee, Ji-Hye Kim, In-Ryoung |
author_facet | Yu, Su-Bin Kim, Hye-Jin Kang, Hae-Mi Park, Bong-Soo Lee, Ji-Hye Kim, In-Ryoung |
author_sort | Yu, Su-Bin |
collection | PubMed |
description | Bone homeostasis destruction is triggered by the uncontrolled activity of osteoblasts and osteoclasts. Targeting both the regulation of bone formation and resorption is a promising strategy for treating bone disorders. Cordycepin is a major component of Chinese caterpillar fungus Cordyceps militaris. It exerts a variety of biological actions in various cells and animal models. However, its function on bone metabolism remains unclear. In the present study, we discovered a dual-action function of cordycepin in murine MC3T3-E1 and RAW264.7 cells. MC3T3-E1 cells were cultured in an osteogenic medium in the presence of 1 μM cordycepin for up two weeks. Cordycepin was used for effects of osteoblast and osteoclast differentiation. Cell viability was measured using the MTT assay. Osteoblast differentiation was confirmed by alizarin red staining, ALP activity, western blot, and real-time PCR. Osteoclast differentiation and autophagic activity were confirmed via TRAP staining, pit formation assay, confocal microscopy, western blot, and real-time PCR. Cordycepin promoted osteoblast differentiation, matrix mineralization, and induction of osteoblast markers via BMP2/Runx2/Osterix pathway. On the other hand, RAW264.7 cells were differentiated into osteoclast by RANKL treatment for 72 h. 1 μM cordycepin significantly inhibited RANKL-induced osteoclast formation and resorption activity through disturbing the actin ring-formatted sealing zone and activating cathepsin K and MMP9. These findings indicate that cordycepin might be an innovative dual-action therapeutic agent for bone disease caused by an imbalance of osteoblasts and osteoclasts. |
format | Online Article Text |
id | pubmed-6206560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-62065602018-11-08 Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro Yu, Su-Bin Kim, Hye-Jin Kang, Hae-Mi Park, Bong-Soo Lee, Ji-Hye Kim, In-Ryoung Evid Based Complement Alternat Med Research Article Bone homeostasis destruction is triggered by the uncontrolled activity of osteoblasts and osteoclasts. Targeting both the regulation of bone formation and resorption is a promising strategy for treating bone disorders. Cordycepin is a major component of Chinese caterpillar fungus Cordyceps militaris. It exerts a variety of biological actions in various cells and animal models. However, its function on bone metabolism remains unclear. In the present study, we discovered a dual-action function of cordycepin in murine MC3T3-E1 and RAW264.7 cells. MC3T3-E1 cells were cultured in an osteogenic medium in the presence of 1 μM cordycepin for up two weeks. Cordycepin was used for effects of osteoblast and osteoclast differentiation. Cell viability was measured using the MTT assay. Osteoblast differentiation was confirmed by alizarin red staining, ALP activity, western blot, and real-time PCR. Osteoclast differentiation and autophagic activity were confirmed via TRAP staining, pit formation assay, confocal microscopy, western blot, and real-time PCR. Cordycepin promoted osteoblast differentiation, matrix mineralization, and induction of osteoblast markers via BMP2/Runx2/Osterix pathway. On the other hand, RAW264.7 cells were differentiated into osteoclast by RANKL treatment for 72 h. 1 μM cordycepin significantly inhibited RANKL-induced osteoclast formation and resorption activity through disturbing the actin ring-formatted sealing zone and activating cathepsin K and MMP9. These findings indicate that cordycepin might be an innovative dual-action therapeutic agent for bone disease caused by an imbalance of osteoblasts and osteoclasts. Hindawi 2018-10-16 /pmc/articles/PMC6206560/ /pubmed/30410556 http://dx.doi.org/10.1155/2018/5892957 Text en Copyright © 2018 Su-Bin Yu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yu, Su-Bin Kim, Hye-Jin Kang, Hae-Mi Park, Bong-Soo Lee, Ji-Hye Kim, In-Ryoung Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title | Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title_full | Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title_fullStr | Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title_full_unstemmed | Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title_short | Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro |
title_sort | cordycepin accelerates osteoblast mineralization and attenuates osteoclast differentiation in vitro |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206560/ https://www.ncbi.nlm.nih.gov/pubmed/30410556 http://dx.doi.org/10.1155/2018/5892957 |
work_keys_str_mv | AT yusubin cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro AT kimhyejin cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro AT kanghaemi cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro AT parkbongsoo cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro AT leejihye cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro AT kiminryoung cordycepinacceleratesosteoblastmineralizationandattenuatesosteoclastdifferentiationinvitro |