Cargando…

Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model

BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-d...

Descripción completa

Detalles Bibliográficos
Autores principales: Payne, Beth A., Ryan, Helen, Bone, Jeffrey, Magee, Laura A., Aarvold, Alice B., Mark Ansermino, J., Bhutta, Zulfiqar A., Bowen, Mary, Guilherme Cecatti, J., Chazotte, Cynthia, Crozier, Tim, de Pont, Anne-Cornélie J. M., Demirkiran, Oktay, Duan, Tao, Kallen, Marlot, Ganzevoort, Wessel, Geary, Michael, Goffman, Dena, Hutcheon, Jennifer A., Joseph, K. S., Lapinsky, Stephen E., Lataifeh, Isam, Li, Jing, Liskonova, Sarka, Hamel, Emily M., McAuliffe, Fionnuala M., O’Herlihy, Colm, Mol, Ben W. J., Seaward, P. Gareth R., Tadros, Ramzy, Togal, Turkan, Qureshi, Rahat, Vivian Ukah, U., Vasquez, Daniela, Wallace, Euan, Yong, Paul, Zhou, Vivian, Walley, Keith R., von Dadelszen, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206915/
https://www.ncbi.nlm.nih.gov/pubmed/30373675
http://dx.doi.org/10.1186/s13054-018-2215-6
_version_ 1783366446702657536
author Payne, Beth A.
Ryan, Helen
Bone, Jeffrey
Magee, Laura A.
Aarvold, Alice B.
Mark Ansermino, J.
Bhutta, Zulfiqar A.
Bowen, Mary
Guilherme Cecatti, J.
Chazotte, Cynthia
Crozier, Tim
de Pont, Anne-Cornélie J. M.
Demirkiran, Oktay
Duan, Tao
Kallen, Marlot
Ganzevoort, Wessel
Geary, Michael
Goffman, Dena
Hutcheon, Jennifer A.
Joseph, K. S.
Lapinsky, Stephen E.
Lataifeh, Isam
Li, Jing
Liskonova, Sarka
Hamel, Emily M.
McAuliffe, Fionnuala M.
O’Herlihy, Colm
Mol, Ben W. J.
Seaward, P. Gareth R.
Tadros, Ramzy
Togal, Turkan
Qureshi, Rahat
Vivian Ukah, U.
Vasquez, Daniela
Wallace, Euan
Yong, Paul
Zhou, Vivian
Walley, Keith R.
von Dadelszen, Peter
author_facet Payne, Beth A.
Ryan, Helen
Bone, Jeffrey
Magee, Laura A.
Aarvold, Alice B.
Mark Ansermino, J.
Bhutta, Zulfiqar A.
Bowen, Mary
Guilherme Cecatti, J.
Chazotte, Cynthia
Crozier, Tim
de Pont, Anne-Cornélie J. M.
Demirkiran, Oktay
Duan, Tao
Kallen, Marlot
Ganzevoort, Wessel
Geary, Michael
Goffman, Dena
Hutcheon, Jennifer A.
Joseph, K. S.
Lapinsky, Stephen E.
Lataifeh, Isam
Li, Jing
Liskonova, Sarka
Hamel, Emily M.
McAuliffe, Fionnuala M.
O’Herlihy, Colm
Mol, Ben W. J.
Seaward, P. Gareth R.
Tadros, Ramzy
Togal, Turkan
Qureshi, Rahat
Vivian Ukah, U.
Vasquez, Daniela
Wallace, Euan
Yong, Paul
Zhou, Vivian
Walley, Keith R.
von Dadelszen, Peter
author_sort Payne, Beth A.
collection PubMed
description BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care. METHODS: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration. RESULTS: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08). CONCLUSIONS: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-018-2215-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6206915
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-62069152018-10-31 Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model Payne, Beth A. Ryan, Helen Bone, Jeffrey Magee, Laura A. Aarvold, Alice B. Mark Ansermino, J. Bhutta, Zulfiqar A. Bowen, Mary Guilherme Cecatti, J. Chazotte, Cynthia Crozier, Tim de Pont, Anne-Cornélie J. M. Demirkiran, Oktay Duan, Tao Kallen, Marlot Ganzevoort, Wessel Geary, Michael Goffman, Dena Hutcheon, Jennifer A. Joseph, K. S. Lapinsky, Stephen E. Lataifeh, Isam Li, Jing Liskonova, Sarka Hamel, Emily M. McAuliffe, Fionnuala M. O’Herlihy, Colm Mol, Ben W. J. Seaward, P. Gareth R. Tadros, Ramzy Togal, Turkan Qureshi, Rahat Vivian Ukah, U. Vasquez, Daniela Wallace, Euan Yong, Paul Zhou, Vivian Walley, Keith R. von Dadelszen, Peter Crit Care Research BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care. METHODS: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration. RESULTS: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08). CONCLUSIONS: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-018-2215-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-30 /pmc/articles/PMC6206915/ /pubmed/30373675 http://dx.doi.org/10.1186/s13054-018-2215-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Payne, Beth A.
Ryan, Helen
Bone, Jeffrey
Magee, Laura A.
Aarvold, Alice B.
Mark Ansermino, J.
Bhutta, Zulfiqar A.
Bowen, Mary
Guilherme Cecatti, J.
Chazotte, Cynthia
Crozier, Tim
de Pont, Anne-Cornélie J. M.
Demirkiran, Oktay
Duan, Tao
Kallen, Marlot
Ganzevoort, Wessel
Geary, Michael
Goffman, Dena
Hutcheon, Jennifer A.
Joseph, K. S.
Lapinsky, Stephen E.
Lataifeh, Isam
Li, Jing
Liskonova, Sarka
Hamel, Emily M.
McAuliffe, Fionnuala M.
O’Herlihy, Colm
Mol, Ben W. J.
Seaward, P. Gareth R.
Tadros, Ramzy
Togal, Turkan
Qureshi, Rahat
Vivian Ukah, U.
Vasquez, Daniela
Wallace, Euan
Yong, Paul
Zhou, Vivian
Walley, Keith R.
von Dadelszen, Peter
Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title_full Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title_fullStr Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title_full_unstemmed Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title_short Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
title_sort development and internal validation of the multivariable cipher (collaborative integrated pregnancy high-dependency estimate of risk) clinical risk prediction model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206915/
https://www.ncbi.nlm.nih.gov/pubmed/30373675
http://dx.doi.org/10.1186/s13054-018-2215-6
work_keys_str_mv AT paynebetha developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT ryanhelen developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT bonejeffrey developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT mageelauraa developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT aarvoldaliceb developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT markanserminoj developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT bhuttazulfiqara developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT bowenmary developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT guilhermececattij developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT chazottecynthia developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT croziertim developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT depontannecorneliejm developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT demirkiranoktay developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT duantao developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT kallenmarlot developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT ganzevoortwessel developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT gearymichael developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT goffmandena developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT hutcheonjennifera developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT josephks developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT lapinskystephene developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT lataifehisam developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT lijing developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT liskonovasarka developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT hamelemilym developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT mcauliffefionnualam developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT oherlihycolm developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT molbenwj developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT seawardpgarethr developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT tadrosramzy developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT togalturkan developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT qureshirahat developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT vivianukahu developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT vasquezdaniela developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT wallaceeuan developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT yongpaul developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT zhouvivian developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT walleykeithr developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT vondadelszenpeter developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel
AT developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel