Cargando…
Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-d...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206915/ https://www.ncbi.nlm.nih.gov/pubmed/30373675 http://dx.doi.org/10.1186/s13054-018-2215-6 |
_version_ | 1783366446702657536 |
---|---|
author | Payne, Beth A. Ryan, Helen Bone, Jeffrey Magee, Laura A. Aarvold, Alice B. Mark Ansermino, J. Bhutta, Zulfiqar A. Bowen, Mary Guilherme Cecatti, J. Chazotte, Cynthia Crozier, Tim de Pont, Anne-Cornélie J. M. Demirkiran, Oktay Duan, Tao Kallen, Marlot Ganzevoort, Wessel Geary, Michael Goffman, Dena Hutcheon, Jennifer A. Joseph, K. S. Lapinsky, Stephen E. Lataifeh, Isam Li, Jing Liskonova, Sarka Hamel, Emily M. McAuliffe, Fionnuala M. O’Herlihy, Colm Mol, Ben W. J. Seaward, P. Gareth R. Tadros, Ramzy Togal, Turkan Qureshi, Rahat Vivian Ukah, U. Vasquez, Daniela Wallace, Euan Yong, Paul Zhou, Vivian Walley, Keith R. von Dadelszen, Peter |
author_facet | Payne, Beth A. Ryan, Helen Bone, Jeffrey Magee, Laura A. Aarvold, Alice B. Mark Ansermino, J. Bhutta, Zulfiqar A. Bowen, Mary Guilherme Cecatti, J. Chazotte, Cynthia Crozier, Tim de Pont, Anne-Cornélie J. M. Demirkiran, Oktay Duan, Tao Kallen, Marlot Ganzevoort, Wessel Geary, Michael Goffman, Dena Hutcheon, Jennifer A. Joseph, K. S. Lapinsky, Stephen E. Lataifeh, Isam Li, Jing Liskonova, Sarka Hamel, Emily M. McAuliffe, Fionnuala M. O’Herlihy, Colm Mol, Ben W. J. Seaward, P. Gareth R. Tadros, Ramzy Togal, Turkan Qureshi, Rahat Vivian Ukah, U. Vasquez, Daniela Wallace, Euan Yong, Paul Zhou, Vivian Walley, Keith R. von Dadelszen, Peter |
author_sort | Payne, Beth A. |
collection | PubMed |
description | BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care. METHODS: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration. RESULTS: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08). CONCLUSIONS: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-018-2215-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6206915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62069152018-10-31 Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model Payne, Beth A. Ryan, Helen Bone, Jeffrey Magee, Laura A. Aarvold, Alice B. Mark Ansermino, J. Bhutta, Zulfiqar A. Bowen, Mary Guilherme Cecatti, J. Chazotte, Cynthia Crozier, Tim de Pont, Anne-Cornélie J. M. Demirkiran, Oktay Duan, Tao Kallen, Marlot Ganzevoort, Wessel Geary, Michael Goffman, Dena Hutcheon, Jennifer A. Joseph, K. S. Lapinsky, Stephen E. Lataifeh, Isam Li, Jing Liskonova, Sarka Hamel, Emily M. McAuliffe, Fionnuala M. O’Herlihy, Colm Mol, Ben W. J. Seaward, P. Gareth R. Tadros, Ramzy Togal, Turkan Qureshi, Rahat Vivian Ukah, U. Vasquez, Daniela Wallace, Euan Yong, Paul Zhou, Vivian Walley, Keith R. von Dadelszen, Peter Crit Care Research BACKGROUND: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care. METHODS: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration. RESULTS: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08). CONCLUSIONS: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-018-2215-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-30 /pmc/articles/PMC6206915/ /pubmed/30373675 http://dx.doi.org/10.1186/s13054-018-2215-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Payne, Beth A. Ryan, Helen Bone, Jeffrey Magee, Laura A. Aarvold, Alice B. Mark Ansermino, J. Bhutta, Zulfiqar A. Bowen, Mary Guilherme Cecatti, J. Chazotte, Cynthia Crozier, Tim de Pont, Anne-Cornélie J. M. Demirkiran, Oktay Duan, Tao Kallen, Marlot Ganzevoort, Wessel Geary, Michael Goffman, Dena Hutcheon, Jennifer A. Joseph, K. S. Lapinsky, Stephen E. Lataifeh, Isam Li, Jing Liskonova, Sarka Hamel, Emily M. McAuliffe, Fionnuala M. O’Herlihy, Colm Mol, Ben W. J. Seaward, P. Gareth R. Tadros, Ramzy Togal, Turkan Qureshi, Rahat Vivian Ukah, U. Vasquez, Daniela Wallace, Euan Yong, Paul Zhou, Vivian Walley, Keith R. von Dadelszen, Peter Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title | Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title_full | Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title_fullStr | Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title_full_unstemmed | Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title_short | Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model |
title_sort | development and internal validation of the multivariable cipher (collaborative integrated pregnancy high-dependency estimate of risk) clinical risk prediction model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206915/ https://www.ncbi.nlm.nih.gov/pubmed/30373675 http://dx.doi.org/10.1186/s13054-018-2215-6 |
work_keys_str_mv | AT paynebetha developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT ryanhelen developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT bonejeffrey developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT mageelauraa developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT aarvoldaliceb developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT markanserminoj developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT bhuttazulfiqara developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT bowenmary developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT guilhermececattij developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT chazottecynthia developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT croziertim developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT depontannecorneliejm developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT demirkiranoktay developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT duantao developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT kallenmarlot developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT ganzevoortwessel developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT gearymichael developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT goffmandena developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT hutcheonjennifera developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT josephks developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT lapinskystephene developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT lataifehisam developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT lijing developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT liskonovasarka developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT hamelemilym developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT mcauliffefionnualam developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT oherlihycolm developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT molbenwj developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT seawardpgarethr developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT tadrosramzy developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT togalturkan developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT qureshirahat developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT vivianukahu developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT vasquezdaniela developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT wallaceeuan developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT yongpaul developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT zhouvivian developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT walleykeithr developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT vondadelszenpeter developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel AT developmentandinternalvalidationofthemultivariableciphercollaborativeintegratedpregnancyhighdependencyestimateofriskclinicalriskpredictionmodel |