Cargando…
Ship roll motion prediction based on ℓ(1) regularized extreme learning machine
In this paper, a new method is proposed for prediction of ship roll motion based on extreme learning machine (ELM). To improve the prediction accuracy and avoid over or under fitting, two techniques are adopted to select the appropriate structure of ELM. First, the inputs of the ELM are selected fro...
Autores principales: | Guan, Binglei, Yang, Wei, Wang, Zhibin, Tang, Yinggan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207323/ https://www.ncbi.nlm.nih.gov/pubmed/30376580 http://dx.doi.org/10.1371/journal.pone.0206476 |
Ejemplares similares
-
Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers
por: Choi, Jungyeon, et al.
Publicado: (2022) -
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images
por: Khellal, Atmane, et al.
Publicado: (2018) -
Study of Rolling Motion of Ships in Random Beam Seas with Nonlinear Restoring Moment and Damping Effects Using Neuroevolutionary Technique
por: Khan, Naveed Ahmad, et al.
Publicado: (2022) -
An Improved Multispectral Palmprint Recognition System Using Autoencoder with Regularized Extreme Learning Machine
por: Gumaei, Abdu, et al.
Publicado: (2018)