Cargando…
Training LSTM Networks With Resistive Cross-Point Devices
In our previous work we have shown that resistive cross point devices, so called resistive processing unit (RPU) devices, can provide significant power and speed benefits when training deep fully connected networks as well as convolutional neural networks. In this work, we further extend the RPU con...
Autores principales: | Gokmen, Tayfun, Rasch, Malte J., Haensch, Wilfried |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207602/ https://www.ncbi.nlm.nih.gov/pubmed/30405334 http://dx.doi.org/10.3389/fnins.2018.00745 |
Ejemplares similares
-
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
por: Gokmen, Tayfun, et al.
Publicado: (2017) -
Algorithm for Training Neural Networks on Resistive Device Arrays
por: Gokmen, Tayfun, et al.
Publicado: (2020) -
RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
por: Rasch, Malte J., et al.
Publicado: (2019) -
Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations
por: Gokmen, Tayfun, et al.
Publicado: (2016) -
Neural Network Training With Asymmetric Crosspoint Elements
por: Onen, Murat, et al.
Publicado: (2022)