Cargando…
Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging
BACKGROUND: Deep learning is a ground-breaking technology that is revolutionising many research and industrial fields. Generative models are recently gaining interest. Here, we investigate their potential, namely conditional generative adversarial networks, in the field of magnetic resonance imaging...
Autores principales: | Galbusera, Fabio, Bassani, Tito, Casaroli, Gloria, Gitto, Salvatore, Zanchetta, Edoardo, Costa, Francesco, Sconfienza, Luca Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207611/ https://www.ncbi.nlm.nih.gov/pubmed/30377873 http://dx.doi.org/10.1186/s41747-018-0060-7 |
Ejemplares similares
-
Artificial intelligence and machine learning in spine research
por: Galbusera, Fabio, et al.
Publicado: (2019) -
Dependence of lumbar loads on spinopelvic sagittal alignment: An evaluation based on musculoskeletal modeling
por: Bassani, Tito, et al.
Publicado: (2019) -
Exploring the Potential of Generative Adversarial Networks for Synthesizing Radiological Images of the Spine to be Used in In Silico Trials
por: Galbusera, Fabio, et al.
Publicado: (2018) -
The Role of the Size and Location of the Tumors and of the Vertebral Anatomy in Determining the Structural Stability of the Metastatically Involved Spine: a Finite Element Study
por: Galbusera, Fabio, et al.
Publicado: (2018) -
Effect of a mattress on lumbar spine alignment in supine position in healthy subjects: an MRI study
por: Vitale, Jacopo Antonino, et al.
Publicado: (2023)