Cargando…
Deep learning enables automated scoring of liver fibrosis stages
Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without th...
Autores principales: | Yu, Yang, Wang, Jiahao, Ng, Chan Way, Ma, Yukun, Mo, Shupei, Fong, Eliza Li Shan, Xing, Jiangwa, Song, Ziwei, Xie, Yufei, Si, Ke, Wee, Aileen, Welsch, Roy E., So, Peter T. C., Yu, Hanry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207665/ https://www.ncbi.nlm.nih.gov/pubmed/30375454 http://dx.doi.org/10.1038/s41598-018-34300-2 |
Ejemplares similares
-
In Vitro Micropatterned Human Pluripotent Stem Cell Test (µP-hPST) for Morphometric-Based Teratogen Screening
por: Xing, Jiangwa, et al.
Publicado: (2017) -
A method for human teratogen detection by geometrically confined cell differentiation and migration
por: Xing, Jiangwa, et al.
Publicado: (2015) -
Corrigendum: A method for human teratogen detection by geometrically confined cell differentiation and migration
por: Xing, Jiangwa, et al.
Publicado: (2015) -
Reproducibility and robustness of high-throughput S1500+ transcriptomics on primary rat hepatocytes for chemical-induced hepatotoxicity assessment()
por: Lee, Fan, et al.
Publicado: (2021) -
Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification
por: Stanciu, Stefan G., et al.
Publicado: (2014)