Cargando…
MRI Compatibility: Automatic Brain Shunt Valve Recognition using Feature Engineering and Deep Convolutional Neural Networks
The aim of this study is to evaluate whether we could develop a machine learning method to distinguish models of cerebrospinal fluid shunt valves (CSF-SVs) from their appearance in clinical X-rays. This is an essential component of an automatic MRI safety system based on X-ray imaging. To this end,...
Autores principales: | Giancardo, Luca, Arevalo, Octavio, Tenreiro, Andrea, Riascos, Roy, Bonfante, Eliana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207736/ https://www.ncbi.nlm.nih.gov/pubmed/30375411 http://dx.doi.org/10.1038/s41598-018-34164-6 |
Ejemplares similares
-
Automatic Recognition of Road Damage Based on Lightweight Attentional Convolutional Neural Network
por: Liang, Han, et al.
Publicado: (2022) -
An improved multi-input deep convolutional neural network for automatic emotion recognition
por: Chen, Peiji, et al.
Publicado: (2022) -
Automatic Concrete Damage Recognition Using Multi-Level Attention Convolutional Neural Network
por: Shin, Hyun Kyu, et al.
Publicado: (2020) -
Automatic Facial Recognition of Williams-Beuren Syndrome Based on Deep Convolutional Neural Networks
por: Liu, Hui, et al.
Publicado: (2021) -
Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging
por: Hsu, Shih-Tien, et al.
Publicado: (2022)