Cargando…
Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning
This paper describes a new image generation algorithm based on generative adversarial network. With an information-theoretic extension to the autoencoder-based discriminator, this new algorithm is able to learn interpretable representations from the input images. Our model not only adversarially min...
Autores principales: | Hah, Junghoon, Lee, Woojin, Lee, Jaewook, Park, Saerom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207896/ https://www.ncbi.nlm.nih.gov/pubmed/30416519 http://dx.doi.org/10.1155/2018/6465949 |
Ejemplares similares
-
Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model
por: Luo, Ze, et al.
Publicado: (2020) -
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
por: Park, Saerom, et al.
Publicado: (2016) -
Connectivity-informed drainage network generation using deep convolution generative adversarial networks
por: Kim, Sung Eun, et al.
Publicado: (2021) -
INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA
por: Riley, Rebecca, et al.
Publicado: (2023) -
Learning cortical representations through perturbed and adversarial dreaming
por: Deperrois, Nicolas, et al.
Publicado: (2022)