Cargando…
Pilot Study on Gait Classification Using fNIRS Signals
Rehabilitation training is essential for motor dysfunction patients, and the training through their subjective motion intention, comparing to passive training, is more conducive to rehabilitation. This study proposes a method to identify motion intention of different walking states under the normal...
Autores principales: | Jin, Hedian, Li, Chunguang, Xu, Jiacheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207899/ https://www.ncbi.nlm.nih.gov/pubmed/30416520 http://dx.doi.org/10.1155/2018/7403471 |
Ejemplares similares
-
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks
por: Hamid, Huma, et al.
Publicado: (2022) -
Possibilities for examining the neural control of gait in humans with fNIRS
por: Perrey, Stéphane
Publicado: (2014) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Classification of Individual Finger Movements from Right Hand Using fNIRS Signals
por: Khan, Haroon, et al.
Publicado: (2021)