Cargando…
A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE
Several imaging modalities, including T1-weighted structural imaging, diffusion tensor imaging, and functional MRI can show chronological age related changes. Employing machine learning algorithms, an individual's imaging data can predict their age with reasonable accuracy. While details vary a...
Autores principales: | Le, Trang T., Kuplicki, Rayus T., McKinney, Brett A., Yeh, Hung-Wen, Thompson, Wesley K., Paulus, Martin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208001/ https://www.ncbi.nlm.nih.gov/pubmed/30405393 http://dx.doi.org/10.3389/fnagi.2018.00317 |
Ejemplares similares
-
When your brain looks older than expected: combined lifestyle risk and BrainAGE
por: Bittner, Nora, et al.
Publicado: (2021) -
Advanced BrainAGE in older adults with type 2 diabetes mellitus
por: Franke, Katja, et al.
Publicado: (2013) -
MRI BrainAGE demonstrates increased brain aging in systemic lupus erythematosus patients
por: Kuchcinski, Grégory, et al.
Publicado: (2023) -
Machine Learning Analysis of Electronic Nose in a Transdiagnostic Community Sample With a Streamlined Data Collection Approach: No Links Between Volatile Organic Compounds and Psychiatric Symptoms
por: Xu, Bohan, et al.
Publicado: (2020) -
Increased Brain Age Gap Estimate (BrainAGE) in Young Adults After Premature Birth
por: Hedderich, Dennis M., et al.
Publicado: (2021)