Cargando…

Anti-thrombotic effect of a factor Xa inhibitor TAK-442 in a rabbit model of arteriovenous shunt thrombosis stimulated with tissue factor

OBJECTIVE: Arterial thrombosis is triggered by tissue factor, which is a transmembrane glycoprotein can be released into the blood circulation after plaque rupture. Animal models with reflecting ruptured plaque lesions will be useful to understand efficacy of anticoagulant. In this study, we sought...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinozawa, Emiko, Kawamura, Masaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208035/
https://www.ncbi.nlm.nih.gov/pubmed/30376878
http://dx.doi.org/10.1186/s13104-018-3886-4
Descripción
Sumario:OBJECTIVE: Arterial thrombosis is triggered by tissue factor, which is a transmembrane glycoprotein can be released into the blood circulation after plaque rupture. Animal models with reflecting ruptured plaque lesions will be useful to understand efficacy of anticoagulant. In this study, we sought to improve a common arteriovenous shunt model in rabbits, aiming for a model of thrombosis stimulated with tissue factor, and to investigate the anti-thrombotic effect of a direct factor Xa inhibitor TAK-442 in the model. RESULTS: In the model where thrombus was stimulated with a thrombogenic silk thread soaked with recombinant human tissue factor, thrombus formation was significantly reduced by TAK-442 at more than 37.5 µg/kg, accompanied with prolonged plasma hemostatic parameters. Although efficacious doses of anti-coagulants in ordinary arteriovenous thrombosis models are widely reported to be higher than those in venous thrombosis models, TAK-442 showed its efficacy in the present arteriovenous shunt thrombosis model, with equivalent sensitivity in a previously reported venous model. TAK-442 might be effective under conditions thrombus formed is more influenced by tissue factor pathway.