Cargando…
CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions
CRISPR-Cas systems not only play key roles in prokaryotic acquired immunity, but can also be adapted as powerful genome editing tools. Understanding the native role of CRISPR-Cas systems in providing adaptive immunity can lead to new CRISPR-based technologies. Here, we develop CRISPRminer, a knowled...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208339/ https://www.ncbi.nlm.nih.gov/pubmed/30393777 http://dx.doi.org/10.1038/s42003-018-0184-6 |
Sumario: | CRISPR-Cas systems not only play key roles in prokaryotic acquired immunity, but can also be adapted as powerful genome editing tools. Understanding the native role of CRISPR-Cas systems in providing adaptive immunity can lead to new CRISPR-based technologies. Here, we develop CRISPRminer, a knowledge base and web server to comprehensively collect and investigate the knowledge of CRISPR-Cas systems and generate instructive annotations, including CRISPR arrays and Cas protein annotation, CRISPR-Cas system classification, self-targeting events detection, microbe–phage interaction inference, and anti-CRISPR annotation. CRISPRminer is user-friendly and freely available at http://www.microbiome-bigdata.com/CRISPRminer. |
---|